МАТЕРИАЛЬНЫЙ БАЛАНС ПРОЦЕССОВ ПОЛУЧЕНИЯ БИОТЕХНОЛОГИЧЕСКИХ ПРОДУКТОВ ИЗ БИОМАССЫ МИСКАНТУСА ГИГАНТСКОГО
https://doi.org/10.20914/2304-4691-2024-3-39-41
Об авторе
Е. А. СкибаРоссия
Список литературы
1. Shavyrkina N.A.; Budaeva V.V.; Skiba E.A.; Gismatulina Y.A.; Sakovich G.V. Review of Current Prospects for Using Miscanthus-Based Polymers // Polymers. 2023. Vol. 15, no. 14. 3097. https://doi.org/10.3390/роlуm15143097
2. Boakye-Boaten N.A. et al. Techno-economic analysis for the biochemical conversion of Miscanthus x giganteus into bioethanol // Biomass and Bioenergy. 2017. Vol. 98. P. 85-94. https://doi.org/10.1016/j.biombioe.2017.01.017
3. Zhang Y. et al. Diverse lignocellulosic feedstocks can achieve high field-scale ethanol yields while providing flexibility for the biorefinery and landscape-level environmental benefits // GCB Bioenergy. 2018. Vol. 10, no. 11. P. 1-16.
4. Sebastian J., Rouissi T., Brar S.K. Miscanthus sp. -Perennial lignocellulosic biomass as feedstock for greener fumaric acid bioproduction // Industrial Crops and Products. 2022. Vol. 175. 114248. https://doi.org/10.1016/j.indcrop.2021.114248
5. Skiba E.A. et al. Miscanthus bioprocessing using НNО3-pretreatment to improve productivity and quality of bioethanol and downstream ethylene // Industrial Crops and Products. 2022. 177. 114448. https://doi.org/10.1016/j.indcrop.2021.114448
6. Skiba E.A., et al. Self-standardization of quality of bacterial cellulose produced by Medusomyces gisevii in nutrient media derived from Miscanthus biomass // Carbohydrate Polymers. 2021. 252. 117178, https://doi.org/10.1016/j.carbpol.2020.1171787
7. Shavyrkina NA Obtaining lactic acid from oat husks // Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2021. 11 (1). 99-106. (In Russian)
8. Jain, S., & Kumar, S. (2024). A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives. Energy, 131130. https://doi.org/10.1016/j.energy.2024.131130
9. Dourado F., et al. «Chapter 12 -Process modeling and techno-economic evaluation of an industrial bacterial nanocellulose fermentation process», in Bacterial Nanocellulose: From Biotechnology to Bio-economy, eds M. Gama, F. Dourado, and S. Bielecki (Amsterdam: Elsevier), 2016. -Р. 199-214. https://doi.org/10.1016/С2013-0-16061-8
10. Manandhar, A., & Shah, A. (2023). Techno-economic analysis of the production of lactic acid from lignocellulosic biomass. Fermentation, 9(7), 641. https://doi.org/10.3390/fеrmеntаtiоn9070641
11. Ahmad, A., Banat, F., & Taher, H. (2020). A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environmental Technology & Innovation, 20, 101138. https://doi.org/10.1016/j.eti.2020.101138
12. Manandhar, A., & Shah, A. (2020). Techno-economic analysis of bio-based lactic acid production utilizing corn grain as feedstock. Processes, 8(2), 199.https://doi.org/10.3390/рr8020199
Рецензия
Для цитирования:
Скиба Е.А. МАТЕРИАЛЬНЫЙ БАЛАНС ПРОЦЕССОВ ПОЛУЧЕНИЯ БИОТЕХНОЛОГИЧЕСКИХ ПРОДУКТОВ ИЗ БИОМАССЫ МИСКАНТУСА ГИГАНТСКОГО. Актуальная биотехнология. 2024;(3):39-41. https://doi.org/10.20914/2304-4691-2024-3-39-41