Preview

Актуальная биотехнология

Расширенный поиск

БИОСИНТЕЗ БАКТЕРИАЛЬНОЙ НАНОЦЕЛЛЮЛОЗЫ И ЕЁ ФУНКЦИОНАЛИЗАЦИЯ С ЦЕЛЬЮ ПОЛУЧЕНИЯ ПРОДУКТОВ МЕДИЦИНСКОГО НАЗНАЧЕНИЯ

https://doi.org/10.20914/2304-4691-2024-3-15-17

Об авторе

П. А. Горбатова
Институт проблем химико-энергетических технологий Сибирского отделения РАН
Россия


Список литературы

1. Wang Y., Wang, Z., Lin, Y., et al. Nanocellulose from agro-industrial wastes: A review on sources, production, applications, and current challenges // Food Research International. -2024. -P. 114741. DOI: https://doi.org/10.1016/j.foodres.2024.114741.

2. Zhong C. Industrial-scale production and applications of bacterial cellulose // Frontiers in Bioengineering and Biotechnology. -2020. -Vol. 8. - P. 605374. DOI: https://doi.org/10.3389/fbioe.2020.605374.

3. Katyal M., Singh R., Mahajan R., et al. Bacterial cellulose: Nature's greener tool for industries // Biotechnology and Applied Biochemistry. - 2023. -Vol. 70. -№ 5. -P. 1629-1640. DOI: https://doi.org/10.1002/bab.2460.

4. Skiba E.A. et al. Biosynthesis of bacterial nanocellulose from low-cost cellulosic feedstocks: effect of microbial producer // International journal of molecular sciences. -2023. -Vol. 24. -№ 18. -P. 14401. DOI: https://doi.org/10.3390/ijms241814401.

5. Digel I. et al. Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: biosynthesis and structural properties // Cellulose. - 2023.-Vol. 30. -№ 18. -P. 11439-11453. DOI: https://doi.org/10.21203/rs.3.rs-2607212/v1.

6. Kashcheyeva E.I., Korchagina A.A., Gismatulina Y.A., et al. Simultaneous production of cellulose nitrates and bacterial cellulose from lignocellulose of energy crop // Polymers. -2024. -Vol. 16. -P. 42. DOI: https://doi.org/10.3390/роlуm16010042.

7. Sukhikh S., Babich O., Ivanova S., et al. Production of nanocellulose from miscanthus biomass // Current research in green and sustainable chemistry. -2024.-P. 100412. DOI: https://doi.org/10.1016/j.crgsc.2024.100412.

8. Liu W.; You L.; Wang S.; et al. Screening of Miscanthus Genotypes for Sustainable Production of Microcrystalline Cellulose and Cellulose Nanocrystals // Agronomy. -2024. -Vol. 14. -P. 1255. DOI: https://doi.org/10.3390/аgrоnоmу14061255.

9. Shavyrkina N.A., Budaeva V.V., Skiba E.A., et al. Review of Current Prospects for Using Miscanthus-Based Polymers // Polymers. -2023. - Vol. 15. -P. 3097. DOI: https://doi.org/10.3390/роlуm15143097.

10. Mironova G.F., Budaeva V.V., Skiba E.A., et al. Recent Advances in Miscanthus Macromolecule Conversion: // International Journal of Molecular Sciences. -2023. -Vol. 24. -№ 16. -P. 13001. DOI: https://doi.org/10.3390/ijms241613001;

11. Dorogina O.V. et al. Identification of Populations by ISSR Markers and a Histochemical Determination of Transient Starch in Species of the Genus Miscanthus Anderss // Contemporary Problems of Ecology. -2023. -Vol. 16. -№ 1. -P. 67-75. DOI: 10.1134/S199542552301002Х.

12. Skiba E.A., Shavyrkina, N.A., Yang, F., et al. Complete Cycle from Feedstock Miscanthus Giganteus to Target Product Bacterial Nanocellulose // Advances in Engineering Technology Research. -2024. -Vol. 10. - № 5. P. 375-375. DOI: https://doi.org/10.56028/aetr.10.1.375.2024.

13. Stumpf T.R., Yang X., Zhang J., et al. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering // Materials Science and Engineering: C. -2018. -Vol. 82. -P. 372-383. DOI: https://doi.org/10.1016/j.msec.2016.11.121.

14. Zhang Y., Deng W., Wu M., et al. Tailoring functionality of nanocellulose: current status and critical challenges // Nanomaterials. -2023. - Vol. 13. -P. 1-22. DOI: https://doi.org/10.3390/nаnо13091489.

15. Huang J., Zhao M., Hao Y., et al. Recent advances in functional bacterial cellulose for wearable physical sensing applications // Advanced Materials Technologies. -2022. -Vol. 7. -№ 1. -P. 2100617. DOI: https://doi.org/10.1002/admt.202100617.

16. Nursyafiqah J.R. et al. Response surface methodology for optimization of nitrocellulose preparation from nata de coco bacterial cellulose for propellant formulation // Heliyon. -2024. -Vol. 10. -№ 5. -P. е25993. DOI: 10.1016/j.heliyon.2024.е25993.

17. Sun D.P., Ma B., Zhu C.L., et al. Novel nitrocellulose made from bacterial cellulose // Journal of Energetic Materials. -2010. -Vol. 28. -№ 2. P. 85-97. DOI: https://doi.org/10.1080/07370650903222551.

18. Gismatulina Yu. A. Promising energetic polymers from nanostructured bacterial cellulose // Polymers. -2023. -Vol. 15. -№ 9. -P. 2213. DOI: https://doi.org/10.3390/роlуm15092213.

19. Budaeva V.V., Gismatulina Y.A., Mironova G.F., et al. Bacterial nanocellulose nitrates // Nanomaterials. -2019. -Vol. 9. -№ 12. -P. 1694. DOI: https://doi.org/10.3390/nаnо9121694.

20. Горбатова П.А., Корчагина А.А., Гисматулина Ю.А. и др. Свойства нитратов целлюлозы, полученных нитрованием бактериальной целлюлозы с использованием смеси азотной и серной кислот // Известия вузов. Прикладная химия и биотехнология. -2024. -Т. 14. -№ 2. - С. 236-244. DOI: https://doi.org/10.21285/achb.915.

21. Sun S., Feng S., Ji C., et al. Microstructural effects on permeability of Nitrocellulose membranes for biomedical applications // Journal of Membrane Science. -2020. -Vol. 595. -P. 117502. DOI: https://doi.org/10.1016/j.memsci.2019.117502.

22. Chen J.L., Njoku D.I., Tang C., et al. Advances in Microfluidic Paper Based Analytical Devices (µРАDs): Design, Fabrication, and Applications. Small Methods. 2024. P. 2400155. DOI: https://doi.org/10.3390/mi7050086.

23. Tang R., Xie M.Y., Li M., et al. Nitrocellulose membrane for paper-based biosensor // Applied Materials Today. -2022. -Vol. 26. -P. 101305. DOI: https://doi.org/10.1016/j.apmt.2021.101305.

24. Mu X. et al. Nano-porous nitrocellulose liquid bandage modulates cell and cytokine response and accelerates cutaneous wound healing in a mouse model // Carbohydrate polymers. -2016. -Vol. 136. -P. 618-629. DOI: https://doi.org/10.1016/j.carbpol.2015.08.070.

25. Du S. et al. A nanoporous graphene/nitrocellulose membrane beneficial to wound healing // ACS Applied Bio Materials. -2021. -Vol. 4. - № 2. -P. 4522-4531. DOI: 10.1021/acsabm.1с00261.

26. Tanyolaç D., Özdural A.R. Preparation of low-cost magnetic nitrocellulose microbeads // Reactive and Functional Polymers. -2000. -Vol. - № 3. -P. 235-242. DOI: https://doi.org/10.1016/S1381-5148(00)00037-7.

27. Senarat S., Rojviriya C., Sarunyakasitrin K., et al. Moxifloxacin НСl-incorporated aqueous-induced nitrocellulose-based in situ gel for periodontal pocket delivery // Gels. -2023. -Vol. 9. -№ 7. -P. 572. DOI: https://doi.org/10.3390/gеls9070572.

28. Khaing E.M., Jitrangsri K., Chomto P., Phaechamud T. Nitrocellulose for prolonged permeation of levofloxacin НСl-salicylic acid in situ gel // Polymers. -2024. -Vol. 16. -№ 989. https://doi.org/10.3390/роlуm16070989.


Рецензия

Для цитирования:


Горбатова П.А. БИОСИНТЕЗ БАКТЕРИАЛЬНОЙ НАНОЦЕЛЛЮЛОЗЫ И ЕЁ ФУНКЦИОНАЛИЗАЦИЯ С ЦЕЛЬЮ ПОЛУЧЕНИЯ ПРОДУКТОВ МЕДИЦИНСКОГО НАЗНАЧЕНИЯ. Актуальная биотехнология. 2024;(3):15-17. https://doi.org/10.20914/2304-4691-2024-3-15-17

Просмотров: 47


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)