Preview

Topical biotechnology

Advanced search

ДВУХДОМЕННЫЕ БАКТЕРИАЛЬНЫЕ ЛАККАЗЫ: МОДИФИКАЦИЯ И ИММОБИЛИЗАЦИЯ ДЛЯ РАЗРАБОТКИ БИОЭЛЕКТРОКАТАЛИТИЧЕСКИХ СИСТЕМ

https://doi.org/10.20914/2304-4691-2024-3-5-8

About the Authors

С. Алферов
Тульский государственный университет
Russian Federation


А. Абдуллатыпов
Институт фундаментальных проблем биологии РАН – обособленное структурное подразделение ФИЦ ПНЦБИ РАН
Russian Federation


Л. Трубицина
Институт биохимии и физиологии микроорганизмов РАН - обособленное структурное подразделение ФИЦ ПНЦБИ РАН
Russian Federation


К. Егоров
Тульский государственный университет
Russian Federation


О. Понаморева
Тульский государственный университет
Russian Federation


References

1. Komori H., Higuchi Y. Structure and molecular evolution of multicopper blue proteins. // Biomol Concepts. 2010, 1; 1(1) : 31- 40. doi: 10.1515/bmc.2010.004. PMID: 25961983.

2. Ihssen J. et al. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli //Scientific reports. -2015. -Т. 5. -№. 1. -С. 1-13.

3. Trubitsina L.I. et al. Expression of thermophilic two-domain laccase from Catenuloplanes japonicus in Escherichia coli and its activity against triarylmethane and azo dyes // РееrJ. -2021. -Т.

4. Bollella P., Katz E. Enzyme-based biosensors: Tackling electron transfer issues // Sensors. -2020. -Т. 20. -№. 12. -С. 3517

5. Akanda M.R. et al. Recent advances in nanomaterial-modified pencil graphite electrodes for electroanalysis // Electroanalysis - 2016 -V. 28 -№. 3 -P. 408-424.

6. Gunne, M., et al., Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. // Febs j, 2014. 281(18): p. 4307-18

7. Trubitsina, L.I., et al., Structural and functional characterization of two-domain laccase from Streptomyces viridochromogenes. // Biochimie, 2015. 112: p. 151-159

8. Upadhyay, P., et al. Bioprospecting and biotechnological applications of fungal laccase. // 3 Biotech, 2016. 6(1): p. 15

9. Dey, B. and T. Dutta, Laccases: Thriving the domain of bio-electrocatalysis. // Bioelectrochemistry, 2022. 146: p. 108144

10. Olbrich AC, Schild JN, Urlacher VB. Correlation between the Т1 copper reductionpotential and catalytic activity of a small laccase. // J Inorg Biochem. 2019; 201:110843. doi: 10.1016/j.jinorgbio.2019.110843. Epub 2019 Sep 9. PMID:31536948.

11. Toscano MD, De Maria L, Lobedanz S, Ostergaard LH. Optimization of a small laccase by active-site redesign. // Chembiochem. 2013 Jul 8; 14(10) : 1209-11. doi: 10.1002/cbic.201300256. Epub 2013 Jun 14.

12. Trubitsina LI, et al. A Novel Two-Domain Laccase with Middle Redox Potential: Physicochemical and Structural Properties. // Biochemistry (Mosc). 2023; 88(10) : 1658-1667. doi: 10.1134/S0006297923100188. PMID: 38105031.

13. Abdullatypov A. et al. Functionalization of МWСNТs for Bioelectrocatalysis by Bacterial Two-Domain Laccase from Catenuloplanes japonicus. // Nanomaterials (Basel). 2023 Nov 25; 13(23) : 3019. doi: 10.3390/nаnо13233019.

14. A. Ben Tahar, K. Żelechowska, J.F. Biernat, E. Paluszkiewicz, P. Cinquin, D. Martin, A. Zebda. High catalytic performance of laccase wired to naphthylated multiwall carbon nanotubes. // BIOSENSORS & BIOELECTRONICS, 2020, V. 151, 11196

15. Aleksejeva, O. et al., Electrochemistry of a high redox potential laccase obtained by computer-guided mutagenesis combined with directed evolution. Electrochemistry Communications, 2019. 106: p. 106511

16. Milton, R.D. and S.D. Minteer, Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. Journal of The Royal Society Interface, 2017. 14(131): p. 20170253


Review

For citations:


 ,  ,  ,  ,   . Topical biotechnology. 2024;(3):5-8. (In Russ.) https://doi.org/10.20914/2304-4691-2024-3-5-8

Views: 71


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)