Preview

Topical biotechnology

Advanced search

МЕДЬСОДЕРЖАЩИЕ ОКСИДАЗЫ БАКТЕРИЙ И АРХЕЙ: БИОИНЖЕНЕРИЯ И НАПРАВЛЕННЫЙ ДИЗАЙН

https://doi.org/10.20914/2304-4691-2024-2-37-41

About the Authors

О. Понаморева
Тульский государственный университет
Russian Federation


Л. Трубицина
Институт биохимии и физиологии микроорганизмов РАН -обособленное структурное подразделение ФИЦ ПНЦБИ РАН
Russian Federation


А. Моисеева
Тульский государственный университет
Russian Federation


А. Абдуллатыпов
Тульский государственный университет
Russian Federation


И. Трубицин
Тульский государственный университет
Russian Federation


К. Егоров
Тульский государственный университет
Russian Federation


С. Алферов
Тульский государственный университет
Russian Federation


А. Леонтьевский
Институт биохимии и физиологии микроорганизмов РАН - обособленное структурное подразделение ФИЦ ПНЦБИ РАН
Russian Federation


References

1. Orsi, E., et al., Automated in vivo enzyme engineering accelerates biocatalyst optimization. Nat Commun, 2024. 15(1): p. 3447.

2. Solomon, E.I., U.M. Sundaram, and T.E. Machonkin, Multicopper Oxidases and Oxygenases. Chemical Reviews, 1996. 96(7): p. 2563-2606.

3. Zerva, A., et al., Applications of Microbial Laccases: Patent Review of the Past Decade (2009-2019). Catalysts, 2019. 9(12): p. 26.

4. Mano, N. and L. Edembe, Bilirubin oxidases in bioelectrochemistry: Features and recent findings. Biosensors and Bioelectronics, 2013. 50: p. 478-485.

5. Pooalai, R., et al., Genomic analysis uncovers laccase-coding genes and biosynthetic gene clusters encoding antimicrobial compounds in laccase-producing Acinetobacter baumannii. Scientific Reports, 2022. 12(1).

6. Mate, D.M. and M. Alcalde, Laccase engineering: From rational design to directed evolution. Biotechnology Advances, 2015. 33(1): p. 25-40.

7. Takamura, E., et al., Site-Directed Mutagenesis of Multicopper Oxidase from Hyperthermophilic Archaea for High-Voltage Biofuel Cells. Applied Biochemistry and Biotechnology, 2021. 193(2): p. 492-501.

8. Kaur, R., R. Salwan, and V. Sharma, Structural properties, genomic distribution of laccases from Streptomyces and their potential applications. Process Biochemistry, 2022. 118: p. 133-144.

9. Dey, B. and T. Dutta, Laccases: Thriving the domain of bio-electrocatalysis. Bioelectrochemistry, 2022. 146: p. 108144.

10. Hooda, V., et al., Bilirubin enzyme biosensor: potentiality and recent advances towards clinical bioanalysis. Biotechnology Letters, 2017. 39(10): p. 1453-1462.

11. Torrinha, Á., et al., Microenergy generation and dioxygen sensing by bilirubin oxidase immobilized on a nanostructured carbon paper transducer. Electrochimica Acta, 2023. 445: p. 142061.

12. Trubitsina, L.I., et al., A Novel Two-Domain Laccase with Middle Redox Potential: Physicochemical and Structural Properties. Biochemistry (Moscow), 2023. 88(10): p. 1658-1667.

13. Trubitsina, L.I., et al., Expression of thermophilic two-domain laccase from Catenuloplanes japonicus in Escherichia coli and its activity against triarylmethane and azo dyes. РееrJ, 2021. 9: p. е11646.

14. Tan, S. -I., I.S. Ng, and Y. -J. Yu, Heterologous expression of an acidophilic multicopper oxidase in Escherichia coli and its applications in biorecovery of gold. Bioresources and Bioprocessing, 2017. 4(1): p. 20.

15. Abdullatypov, A., et al. Functionalization of МWСNТs for Bioelectrocatalysis by Bacterial Two-Domain Laccase from Catenuloplanes japonicus. Nanomaterials, 2023. 13, 1-24.


Review

For citations:


 ,  ,  ,  ,  ,  ,  ,   . Topical biotechnology. 2024;(2):37-41. (In Russ.) https://doi.org/10.20914/2304-4691-2024-2-37-41

Views: 50


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)