Preview

Актуальная биотехнология

Расширенный поиск

ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИИ ТРАНСГЕНОЗА ДЛЯ ИЗУЧЕНИЯ ВЗАИМОСВЯЗИ МЕЖДУ ОНКОГЕНЕЗОМ И ВРОЖДЕННОЙ ИММУННОЙ СИСТЕМОЙ

https://doi.org/10.20914/2304-4691-2024-2-5-8

Об авторах

Е. А. Степаненко
НИЦ «Курчатовский институт
Россия


И. В. Макарова
НИЦ «Курчатовский институт
Россия


А. А. Ванюшенкова
НИЦ «Курчатовский институт
Россия


Л. Е. Андреева
НИЦ «Курчатовский институт
Россия


Н. А. Щербатова
НИЦ «Курчатовский институт
Россия


Т. П. Герасимова
ФНКЦ ФХМ им. академика Ю.М. Лопухина ФМБА
Россия


В. В. Ненашева
НИЦ «Курчатовский институт
Россия


В. З. Тарантул
НИЦ «Курчатовский институт
Россия


Список литературы

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018, 68(6), 394-424.

2. Coughlin SS. Epidemiology of breast cancer in women. Adv Exp Med Biol. 2019, 1152, 9-29.

3. Shihab I, Khalil BA, Elemam NM, Hachim IV, Hachim MY, Hamoudi RA, Maghazachi AA. Understanding the Role of Innate Immune Cells and Identifying Genes in Breast Cancer Microenvironment. Cancers (Basel). 2020, 12(8), 2226.

4. Friedenson B. Mutations in components of antiviral or microbial defense as a basis for breast cancer. Functional & Integrative Genomics. 2013, 13(4), 411-424.

5. Khan R, Khan A, Ali A, Idrees M. The interplay between viruses and TRIM family proteins. Rev Med Virol. 2019, 29, е2028.

6. van Gent M, Sparrer KMJ, Gack MU. TRIM Proteins and Their Roles in Antiviral Host Defenses. Annu Rev Virol. 2018, 5, 385- 405.

7. Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011, 11, 792-804.

8. Hatakeyama S. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis. Trends Biochem Sci. 2017, 42, 297-311.

9. Tarantul VZ. Many faces of TRIM family proteins on the field of oncoimmunology. Universal J Oncology. 2018, 1, 1-37.

10. Wang X, Zhang Y, Pei X, Guo G, Xue B, Duan X, Dou D.ТRIМ3 inhibits Р53 signaling in breast cancer cells. Cancer Cell Int. 2020, 20, 559.

11. Dai Х, Geng F, Li M, Liu М. Tripartite motif containing 11 regulates the proliferation and apoptosis of breast cancer cells. Oncol Rep. 2019, 41(4), 2567-2574.

12. Kim PY, Tan O, Liu B, Trahair T, Liu T, Haber M, Norris MD, Marshall GM, Cheung BB. High ТDР43 expressionis required for ТRIМ16-induced inhibition of cancer cell growth and correlated with good prognosis of neuroblastoma and breast cancer patients. Cancer Lett. 2016, 374(2), 315-323.

13. Liu J, Welm B, Boucher KM, Ebbert MT, Bernard PS. ТRIМ29 functions as a tumor suppressor in nontumorigenic breast cells and invasive ER + breast cancer. Am J Pathol. 2012, 180(2), 839-847.

14. Zhao TT, Jin F, Li JG, Xu YY, Dong HT, Liu Q, Xing P, Zhu GL, Xu H, Yin SC, Miao ZF. ТRIМ32 promotes proliferation and confers chemoresistance to breast cancer cells through activation of the NF-κB pathway. J Cancer. 2018, 9(8), 1349-1356.

15. Kawabata H, Azuma K, Ikeda K, Sugitani I, Kinowaki K, Fujii T, Osaki A, Saeki T, Horie-Inoue K, Inoue S. ТRIМ44 Is a Poor Prognostic Factor for Breast Cancer Patients as a Modulator of NF-κB Signaling. Int J Mol Sci. 2017, 18(9), 1931.

16. Jin Z, Li H, Hong X, Ying G, Lu X, Zhuang L, Wu S. ТRIМ14 promotes colorectal cancer cell migration and invasion through the SРНК1/SТАТ3 pathway. Cancer Cell Int. 2018, 18, 202.

17. Shen W, Jin Z, Tong X, Wang H, Zhuang L, Lu X, Wu S.ТRIМ14 promotes cell proliferation and inhibits apoptosis by suppressing PTEN in colorectal cancer. Cancer Manag Res. 2019, 11, 5725-35.

18. Su X, Wang J, Chen W, Li Z, Fu X, Yang A. Overexpression of ТRIМ14 promotes tongue squamous cell carcinoma aggressiveness by activating the NF-κB signaling pathway. Oncotarget. 2016, 7(9), 9939.

19. Sun W, Wang Y, Li D, Wu Y, Ji Q, Sun T. Tripartite motif containing 14: An oncogene in papillary thyroid carcinoma. Biochem Biophys Res Commun. 2020, 521, 360-367.

20. Hu G, Pen W, Wang M. ТRIМ14 Promotes Breast Cancer Cell Proliferation by Inhibiting Apoptosis. Oncol Res. 2019, 27(4), 439-447.

21. Nenasheva VV et al. Human ТRIМ14 protects transgenic mice from influenza A viral infection without activation of other innate immunity pathways. Genes Immun. 2021, 22(1), 56-63.

22. Chen M, Zhao Z, Meng Q, Liang P, Su Z, Wu Y, Huang J, Cui J. ТRIМ14 Promotes Noncanonical NF-κB Activation by Modulating р100/р52 Stability via Selective Autophagy. Adv Sci (Weinh). 2019, 7(1), 1901261.

23. Uchil PD, Hinz A, Siegel S, Coenen-Stass A, Pertel T, Luban J, Mothes W. TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity. J Virol. 2013, 87(1), 257-272.

24. Tan G, Xu F, Song H, Yuan Y, Xiao Q, Ma F, Qin FX, Cheng G. Identification of ТRIМ14 as a Type I IFN-Stimulated Gene Controlling Hepatitis B Virus Replication by Targeting НВх. Front Immunol. 2018, 9, 1872.


Рецензия

Для цитирования:


Степаненко Е.А., Макарова И.В., Ванюшенкова А.А., Андреева Л.Е., Щербатова Н.А., Герасимова Т.П., Ненашева В.В., Тарантул В.З. ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИИ ТРАНСГЕНОЗА ДЛЯ ИЗУЧЕНИЯ ВЗАИМОСВЯЗИ МЕЖДУ ОНКОГЕНЕЗОМ И ВРОЖДЕННОЙ ИММУННОЙ СИСТЕМОЙ. Актуальная биотехнология. 2024;(2):5-8. https://doi.org/10.20914/2304-4691-2024-2-5-8

Просмотров: 53


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)