НОВЫЕ МЕХАНИЗМЫ КЛЕТОЧНОГО ОБНОВЛЕНИЯ ХРОМАФФИННОЙ ТКАНИ
https://doi.org/10.20914/2304-4691-2023-2-6-9
About the Authors
Н. ЯгловаRussian Federation
С. Обернихин
Russian Federation
Е. Тимохина
Russian Federation
С. Назимова
Russian Federation
В. Яглов
Russian Federation
References
1. Яглов В.В., Яглова Н.В. Основы частной гистологии. М.: КолосС, 2011, 431 с.
2. Eiden L.E., Jiang S.Z. What's New in Endocrinology: The Chromaffin Cell. Front. Endocrinol. 2018. V. 9. 711.
3. Bornstein S.R., Ehrhart-Bornstein M., Androutsellis-Theotokis A., Eisenhofer G., Vukicevic V., Licinio J., Wong M.L., Calissano P., Nisticò G., Preziosi P., Levi-Montalcini R. Chromaffin cells: the peripheral brain. Mol Psychiatry. 2012. V. 17. №
4. Pignatelli D., Xiao F., Gouvtia A., Ferreira J., Vinson G. Adrenarche in the rat // Journal of Endocrinology. 2006. V. 191. N. 1.
5. Яглова Н.В., Цомартова Д.А., Обернихин С.С., Назимова С.В. Роль канонического Wnt-сигналинга в морфогенезе и регенерации коркового вещества надпочечников крыс, подвергавшихся воздействию эндокринного дисраптора дихлордифенилтрихлорэтана в пренатальном и постнатальном периодах онтогенеза. Известия Российской академии наук. Серия биологическая. 2019. № 1. С. 81-89.
6. Mulligan K.A., Cheyette B.N. Wnt signaling in vertebrate neural development and function. J. Neuroimmune Pharmacol. 2012.
7. Wilson N.H., Stoeckli E.T. Sonic hedgehog regulates Wnt activity during neural circuit formation. Vitamins and Hormones. 2012. V. 88. P. 173-209.
8. Ho K.S., Scott M.P. Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Current Opinion in Neurobiology. 2002. V. 12. N. 1. P. 57-63.
9. Ji H., Miao J., Zhang X., Du Y., Liu H., Li S., Li L. Inhibition of sonic hedgehog signaling aggravates brain damage associated with the down-regulation of Gli 1, Ptch 1 and SOD1 expression in acute ischemic stroke. Neuroscience Letters. 2012. V. 506. N. 1. P. 1-6.
10. Finco I., Lerario A.M., Hammer G.D. Sonic hedgehog and WNT signaling promote adrenal gland regeneration in male mice. Endocrinology. 2018. Vol. 159. P. 579-596.
11. Wu G., Schöler H.R. Role of Oct4 in the early embryo development. Cell Regen. 2014. V. 3. N. 1. 7.
12. Schaefer T., Lengerke C. Sox2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond. Oncogene. 2020. V. 39. N. 2. P. 278-292.
13. Wu G., Han D., Gong Y., Sebastiano V., Gentile L., Singhal N., Adachi K., Fischedick G., Ortmeier C., Sinn M., Radstaak M., Tomilin A., Schöler H.R. Establishment of totipotency does not depend on Oct4A. Nat. Cell Biol. 2013. V. 15. N. 9. P. 1089-1097.
14. Masui S., Nakatake Y., Toyooka Y., Shimosato D., Yagi R., Takahashi K., Okochi H., Okuda A., Matoba R., Sharov A.A., Ko M.S., Niwa H. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 2007. V. 9. N. 6. P. 625-635.
15. Weihe E., Depboylu C., Schütz B., Schäfer M.K., Eiden L.E. Three types of tyrosine hydroxylase-positive CNS neurons distinguished by dopa decarboxylase and VMAT2 co-expression. Cell. Mol. Neurobiol. 2006. V. 26. N. 4-6. P. 659-678.
16. Yang H., Liu C., Fan H., Chen B., Huang D., Zhang L., Zhang Q., An J., Zhao J., Wang Y., Hao D. Sonic Hedgehog Effectively Improves Oct4-Mediated Reprogramming of Astrocytes into Neural Stem Cells. Mol Ther. 2019. V. 27. N. 8. P. 1467-1482.
17. Vukicevic V., Schmid J., Hermann A., Lange S., Qin N., Gebauer L., Chunk K.F., Ravens U., Eisenhofer G., Storch A., Ader M., Bornstein S.R., Ehrhart-Bornstein M. Differentiation of chromaffin progenitor cells to dopaminergic neurons. Cell Transplant. 2012. V. 21. N. 11. P. 2471-2486.
18. Lo J.H., Edwards M., Langerman J., Sridharan R., Plath K., Smale S.T. Oct4: Sox2 binding is essential for establishing but not maintaining active and silent states of dynamically regulated genes in pluripotent cells. Genes Dev. 2022. V. 36. N. 19-20. P. 1079- 1095.
Review
For citations:
, , , , . Topical biotechnology. 2023;(2):6-9. (In Russ.) https://doi.org/10.20914/2304-4691-2023-2-6-9