Preview

Topical biotechnology

Advanced search

ПРИМЕНЕНИЕ КАРБОКСИЛАТРЕДУКТАЗ И АМИНОТРАНСФЕРАЗ ДЛЯ ПРОИЗВОДСТВА 6-АМИНОКАПРОНОВОЙ КИСЛОТЫ И ГЕКСАМЕТИЛЕНДИАМИНА ИЗ АДИПИНОВОЙ КИСЛОТЫ

https://doi.org/10.20914/2304-4691-2020-3-588-591

About the Author

Т. Федорчук
Институт фундаментальных проблем биологии
Russian Federation


References

1. Fedorchuk, T., Khusnutdinova, A., Evdokimova, E., Flick, R., Di Leo, R., Stogios, P., Savchenko, A., Yakunin, A., One-Pot Biocatalytic Transformation of Adipic Acid to 6-Aminocaproic Acid and 1,6 -Hexamethylenediamine Using Carboxylic Acid Reductases and Transaminases. J. Am. Chem. Soc. 2020, 142, 1038-1048.

2. Finnigan, W.;Thomas, A.;Cromar, H.;Gough, B.;Snajdrova, R.;Adams, J.P.;Littlechild, J.A.;Harmer, N.J. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry. ChemCatChem 2017, 9, 1005-1017.

3. Gahloth, D.;Dunstan, M.S.;Quaglia, D.;Klumbys, E.;Lockhart-Cairns, M.P.;Hill, A.M.;Derrington, S.R.;Scrutton, N.S.;Turner, N.J.;Leys, D. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nat. Chem. Biol. 2017, 13, 975-981.

4. Hummel, W.;Groger, H. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficientclosed-looprecycling systems. J. Biotechnol. 2014, 191,22-31.

5. Khusnutdinova, A.N.;Flick, R.;Popovic, A.;Brown, G.;Tchigvintsev, A.;Nocek, B.;Correia, K.;Joo, J.C.;Mahadevan, R.;Yakunin, A.F. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids. Biotechnol. J. 2017, 12(11), 1600751

6. Kunjapur, A.M.;Cervantes, B.;Prather, K.L.J. Coupling carboxylic acid reductase to inorganic pyrophosphatase enhances cell- freein vitro aldehyde biosynthesis. Biochem. Eng. J. 2016, 109,19-27.

7. Napora-Wijata, K.;Strohmeier, G.A.;Winkler, M. Biocatalytic reduction of carboxylic acids. Biotechnol. J. 2014, 9, 822-843.

8. Nocek, B.P.;Khusnutdinova, A.N.;Ruszkowski, M.;Flick, R.;Burda, M.;Batyrova, K.;Brown, G.;Mucha, A.;Joachimiak, A.;Berlicki, L.;Yakunin, A.F. Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases.ACS Catal. 2018, 8, 10746-10760.

9. Raj, K.;Partow, S.;Correia, K.;Khusnutdinova, A.N.;Yakunin, A.F.;Mahadevan, R. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metab Eng. Commun. 2018, 6, 28-32.

10. Tishkov, V.I.;Galkin, A.G.;Marchenko, G.N.;Egorova, O.A.;Sheluho, D.V.;Kulakova, L.B.;Dementieva, L.A.;Egorov, A.M. Catalytic properties and stability of a Pseudomonas sp.101 formate dehydrogenase mutants containing Cys-255-Ser and Cys-255-Met replacements. Biochem. Biophys. Res. Commun. 1993, 192, 976-81.

11. Vrtis, J.M.;White, A.K.;Metcalf, W.W.;van der Donk, W.A. Phosphite dehydrogenase: a versatile cofactor-regenerationenzyme. Angew. Chem., Int. Ed. 2002, 41, 3257-9.

12. Wang, X.;Saba, T.;Yiu, H.H.P.;Howe, R.F.;Anderson, J.A.;Shi, J. CofactorNAD(P)H regeneration inspired by heterologous pathways. Chem. 2017, 2, 621-654.


Review

For citations:


  . Topical biotechnology. 2020;(3):588-591. (In Russ.) https://doi.org/10.20914/2304-4691-2020-3-588-591

Views: 32


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)