ПРИМЕНЕНИЕ КАРБОКСИЛАТРЕДУКТАЗ И АМИНОТРАНСФЕРАЗ ДЛЯ ПРОИЗВОДСТВА 6-АМИНОКАПРОНОВОЙ КИСЛОТЫ И ГЕКСАМЕТИЛЕНДИАМИНА ИЗ АДИПИНОВОЙ КИСЛОТЫ
https://doi.org/10.20914/2304-4691-2020-3-588-591
Список литературы
1. Fedorchuk, T., Khusnutdinova, A., Evdokimova, E., Flick, R., Di Leo, R., Stogios, P., Savchenko, A., Yakunin, A., One-Pot Biocatalytic Transformation of Adipic Acid to 6-Aminocaproic Acid and 1,6 -Hexamethylenediamine Using Carboxylic Acid Reductases and Transaminases. J. Am. Chem. Soc. 2020, 142, 1038-1048.
2. Finnigan, W.;Thomas, A.;Cromar, H.;Gough, B.;Snajdrova, R.;Adams, J.P.;Littlechild, J.A.;Harmer, N.J. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry. ChemCatChem 2017, 9, 1005-1017.
3. Gahloth, D.;Dunstan, M.S.;Quaglia, D.;Klumbys, E.;Lockhart-Cairns, M.P.;Hill, A.M.;Derrington, S.R.;Scrutton, N.S.;Turner, N.J.;Leys, D. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nat. Chem. Biol. 2017, 13, 975-981.
4. Hummel, W.;Groger, H. Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficientclosed-looprecycling systems. J. Biotechnol. 2014, 191,22-31.
5. Khusnutdinova, A.N.;Flick, R.;Popovic, A.;Brown, G.;Tchigvintsev, A.;Nocek, B.;Correia, K.;Joo, J.C.;Mahadevan, R.;Yakunin, A.F. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids. Biotechnol. J. 2017, 12(11), 1600751
6. Kunjapur, A.M.;Cervantes, B.;Prather, K.L.J. Coupling carboxylic acid reductase to inorganic pyrophosphatase enhances cell- freein vitro aldehyde biosynthesis. Biochem. Eng. J. 2016, 109,19-27.
7. Napora-Wijata, K.;Strohmeier, G.A.;Winkler, M. Biocatalytic reduction of carboxylic acids. Biotechnol. J. 2014, 9, 822-843.
8. Nocek, B.P.;Khusnutdinova, A.N.;Ruszkowski, M.;Flick, R.;Burda, M.;Batyrova, K.;Brown, G.;Mucha, A.;Joachimiak, A.;Berlicki, L.;Yakunin, A.F. Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases.ACS Catal. 2018, 8, 10746-10760.
9. Raj, K.;Partow, S.;Correia, K.;Khusnutdinova, A.N.;Yakunin, A.F.;Mahadevan, R. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metab Eng. Commun. 2018, 6, 28-32.
10. Tishkov, V.I.;Galkin, A.G.;Marchenko, G.N.;Egorova, O.A.;Sheluho, D.V.;Kulakova, L.B.;Dementieva, L.A.;Egorov, A.M. Catalytic properties and stability of a Pseudomonas sp.101 formate dehydrogenase mutants containing Cys-255-Ser and Cys-255-Met replacements. Biochem. Biophys. Res. Commun. 1993, 192, 976-81.
11. Vrtis, J.M.;White, A.K.;Metcalf, W.W.;van der Donk, W.A. Phosphite dehydrogenase: a versatile cofactor-regenerationenzyme. Angew. Chem., Int. Ed. 2002, 41, 3257-9.
12. Wang, X.;Saba, T.;Yiu, H.H.P.;Howe, R.F.;Anderson, J.A.;Shi, J. CofactorNAD(P)H regeneration inspired by heterologous pathways. Chem. 2017, 2, 621-654.
Рецензия
Для цитирования:
Федорчук Т.П. ПРИМЕНЕНИЕ КАРБОКСИЛАТРЕДУКТАЗ И АМИНОТРАНСФЕРАЗ ДЛЯ ПРОИЗВОДСТВА 6-АМИНОКАПРОНОВОЙ КИСЛОТЫ И ГЕКСАМЕТИЛЕНДИАМИНА ИЗ АДИПИНОВОЙ КИСЛОТЫ. Актуальная биотехнология. 2020;(3):588-591. https://doi.org/10.20914/2304-4691-2020-3-588-591