МИКРОРНК КАК ПОТЕНЦИАЛЬНЫЕ МИШЕНИ ДЛЯ ТЕРАПИИ КОГНИТИВНЫХ НАРУШЕНИЙ
https://doi.org/10.20914/2304-4691-2020-3-339-341
Список литературы
1. Kim S., et al. Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med. 2017;49(1):e281.
2. Hu Z., Li Z. miRNAs in synapse development and synaptic plasticity. Curr Opin Neurobiol. 2017;45:24-31.
3. Wu Y.Y. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J Biomed Sci. 2020;27(1):49.
4. Smith A.C.W., Kenny P.J. MicroRNAs regulate synaptic plasticity underlying drug addiction. Genes Brain Behav. 2018;17(3):e12424.
5. Liu YP, Meng JH, Wu X, Xu FL, Xia X, Zhang XC, Liu Y, Yao J, Wang BJ. Rs 1625579 polymorphism in theMIR137 gene is associated with the risk of schizophrenia: updated meta-analysis. Neurosci Lett. 2019;713:134535.
6. Ma J, et al. Psychiatry Res. Identification of miR-22-3p, miR-92a-3p, and miR-137 in peripheral blood as biomarker for schizophrenia. 2018;265:70-76.
7. Cao T., Zhen X.C. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci Ther. 2018;24(7):586-597.
8. Schrode N, et al. Synergistic effects of common schizophrenia risk variants. Nat Genet. 2019 Oct;51(10):1475-1485.
9. JuźwikCA, et al. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol. 2019;182:101664.
10. Miniarikova J, Evers MM, Konstantinova P. Translation of Micro RNA-Based Huntingtin-Lowering Therapies from Preclinical Studies to the Clinic. Mol Ther. 2018;26(4):947-962.
11. Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as Peripheral Biomarkers in Aging and Age-Related Diseases. Prog Mol Biol Transl Sci. 2017;146:47-94.
12. Paul S., Reyes P.R., Garza B.S., Sharma A. Micro RNAs and Child Neuropsychiatric Disorders: A Brief Review. Neurochem Res. 2020;45(2):232-240.
13. Ripa R, et al.. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol. 2017;15(1):9.
14. Cano-Rodriguez D, Rots MG. Epigenetic Editing: On the Verge of Reprogramming Gene Expression at Will. Curr Genet Med Rep. 2016;4(4):170-179.
15. Aquino-Jarquin G. Emerging Role of CRISPR/Cas9 Technology for MicroRNAs Editing in Cancer Research. Cancer Res. 2017;77(24):6812-6817.
16. Zhou J, et al. CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice. Front Plant Sci. 2017;8:1598.
17. Hirosawa M., et al. Cell-type-specific genome editing with a microRNA-responsiveCRISPR-Cas9 switch. // Nucleic Acids Res. 2017;45(13):e118. doi: 10.1093/nar/gkx309.
18. Hoffmann M.D., et al.. Cell-specificCRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR protein // Nucleic Acids Res. 2019;47(13):e75.
19. Shen J., et al. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating theSIRT1/miR-134 signaling pathway in hippocampus. J Affect Disord. 2019;248:81-90.
20. Jawaid A., et al. Memory decline and its reversal in aging and neurodegeneration involve miR-183/96/182 biogenesis. Mol Neurobiol. 2019;56(5):3451-3462.
21. Jessop P., Toledo-Rodriguez M. HippocampalTET1 andTET2 Expression and DNA Hydroxymethylation Are Affected by Physical Exercise in Aged Mice. Front Cell Dev Biol. 2018;6:45.
22. Kandel E. The molecular biology of memory: cAMP,PKA,CRE,CREB-1,CREB-2, and CPEB. Mol. Brain. 2012;5 (14): 1-12.
23. Гринкевич Л.Н. Эпигенетика и формирование долговременной памяти. Рос. физиол. журн. им. И.М. Сеченова. 2012;98(5):553 -574.
24. Danilova AB, et al. Histone H3 Acetylation is Asymmetrically Induced Upon Learning in Identified Neurons of the Food Aversion Network in the Mollusk Helix Lucorum. Front Behav Neurosci. 2010;4:180.
25. Danilova AB, et al. Inability of juvenile snails for long-term memory formation depends on acetylation status of histone H3 and can be improved by NaBtreatment. PLoS ONE. 2012;7(7):e41828.
26. Гринкевич Л.Н. Влияние введения ПОЛИ-L-ЛИЗИНА на формирование долговременной памяти у моллюска Helix // Медицинский академический журнал, 2019;19(4):87-92.
27. Vasiliev GV, et al. Sequencing of Helix lucorum central nervous system small RNAs. NCBI Sequence Read Archive (SRA)SRP136226. 2018.
Рецензия
Для цитирования:
Гринкевич Л.Н. МИКРОРНК КАК ПОТЕНЦИАЛЬНЫЕ МИШЕНИ ДЛЯ ТЕРАПИИ КОГНИТИВНЫХ НАРУШЕНИЙ. Актуальная биотехнология. 2020;(3):339-341. https://doi.org/10.20914/2304-4691-2020-3-339-341