Preview

Topical biotechnology

Advanced search

ИММОБИЛИЗАЦИЯ ГЛЮКОЗООКСИДАЗЫ НА МАГНИТООТДЕЛЯЕМЫХ ОКСИДАХ

https://doi.org/10.20914/2304-4691-2020-3-330-333

About the Authors

А. Сульман
Тверской государственный технический университет
Russian Federation


О. Гребенникова
Тверской государственный технический университет
Russian Federation


Е. Михайлова
Тверской государственный технический университет
Russian Federation


М. Сульман
Тверской государственный технический университет
Russian Federation


В. Матвеева
Тверской государственный технический университет
Russian Federation


References

1. Pal, P.;Kumar, R.;Banerjee, S., Manufacture of Gluconic Acid: A Review Towards Process Intensification for Green Production. Chem. Eng. Process. 2016, 104, 160-171.

2. Mohamad, N.R.;Marzuki, N.H.;Buang, N.A.;Huyop, F.;Wahab, R.A., Review; Agriculture and Environmental Biotechnology. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotec. Eq. 2015, 29, 205-220.

3. Ahmad, R.;Sardar, M., Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix. Biochem. Anal. Biochem. 2015, 4, 1-8.

4. Chen, S.; Wen, L.; Svec, F.; Tan, T.; Lv, Y., Magnetic metal-organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis. RSC Adv. 2017, 7, 21205-21213.

5. Sulman, E.M.; Matveeva, V.G.; Bronstein, L.M., Design of biocatalysts for efficient catalytic processes. Current Opinion in Chemical Engineering. 2019, 26, 1-8.

6. Drout, R.J.; Robison, L.; Farha, O.K. Catalytic applications of enzymes encapsulated in metal-organicframeworks, Coord. Chem. Rev. 2019, 381, 151-160.

7. Sheldon, R.A.; Brady, D. The limits to biocatalysis: pushing the envelope. Chem. Commun. 2018, 54, 6088-6104.

8. Bilal, M.; Asgher, M.; Shah, S.Z.H.; Iqbal, H.M.N. Engineering enzyme-coupledhybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. Int. J. Biol. Macromol. 2019, 135, 677-690.

9. Тихонов, Б.Б.; Сульман, Э.М.; Стадольникова, П.Ю.; Сульман, А.М.; Голикова, Е.П.; Сидоров, А.И.; Матвеева, В.Г. Катализ в промышленности, 2019, 19(1), 59-72.

10. Vranish, J.N.; Ancona, M.G.; Walper, S.A.; Medintz, I.L. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. Langmuir, 2018, 34, 2901-2925.

11. Devine, P.N.; Howard, R.M.; Kumar, R.; Thompson, M.P.; Matthew D.; Truppo, M.D.; Turner, N.J. Extending the application of biocatalysis to meet the challenges of drug development. Nature Rev. Chem., 2018, 2, 409-421.

12. Kobayashi, Y.; Kohara, K.; Kiuchi, Y.; Onoda, H.; Shoji, O.; Yamaguchi, H. Control of microenvironment around enzymes by hydrogels. Chem. Commun., 2020, 56, 6723-6726.

13. Gao, L.; Fan, K.; Yan, X., Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics 2017, 7, 3207-3227.

14. Uc-Cayetano, E.G.; Ordóñez, L.C.; Cauich-Rodríguez, J.V.; Avilés, F., Enhancement of Electrochemical Glucose Sensing by Using Multiwall Carbon Nanotubes decorated with Iron Oxide Nanoparticles. Int. J. Electrochem. Sci. 2016, 11, 6356 -6369.

15. Krishnan, B.P.; Prieto-Lopez, L.O.; Hoefgen, S.; Xue, L.; Wang, S.; Valiante, V.; Cui, J. Thermomagneto-Responsive Smart Biocatalysts for Malonyl-Coenzyme A Synthesis,ACS Appl. Mater. Interfaces, 2020, 12, 20982-20990.

16. Shen, H.; Song, J.; Zhou, Z.; Li, M.; Zhang, R.; Su, P.; Yang, Y.DNA-Directed Immobilized Enzymes on Recoverable Magnetic Nanoparticles Shielded in Nucleotide Coordinated Polymers, Ind. Eng. Chem. Res., 2019, 58, 8585-8596.

17. Hilterhaus, L.; Liese, A.; Kettling, U.; Antranikian, G., Applied Biocatalysis: From Fundamental Science to Industrial Applications. Wiley-VCH: Weinheim, Germany, 2016; p 429.

18. Wang, Y.; Nor, Y.A.; Song, H.; Yang, Y.; Xu, C.; Yu, M.; Yu, C., Small-sized and large-poredendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. J. Mater. Chem. B 2016, 4, 2646-2653.

19. Gonzalez-Delgado, I.; Segura, Y.; Martin, A.; Lopez-Munoz, M. -J.; Morales, G., β-galactosidase covalent immobilization over large-poremesoporous silica supports for the production of high galacto-oligosaccharides(GOS). Microporous Mesoporous Mater. 2018, 257, 51-61.

20. Santos, K.M.A.; Albuquerque, E.M.; Innocenti, G.; Borges, L.E.P.; Sievers, C.; Fraga, M.A., The Role of Bronsted and Water- Tolerant Lewis Acid Sites in the Cascade Aqueous-Phase Reaction of Triose to Lactic Acid. ChemCatChem 2019,11, 3054- 3063.

21. Liu, J.; He, Y.; Yan, L.; Li, K.; Zhang, C.; Xiang, H.; Wen, X.; Li, Y., Nano-sizedZrO2 derived from metal-organicframeworks and their catalytic performance for aromatic synthesis from syngas. Catal. Sci. Technol. 2019,9, 2982-2992.


Review

For citations:


 ,  ,  ,  ,   . Topical biotechnology. 2020;(3):330-333. (In Russ.) https://doi.org/10.20914/2304-4691-2020-3-330-333

Views: 33


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)