Preview

Актуальная биотехнология

Расширенный поиск

ИММОБИЛИЗАЦИЯ ГЛЮКОЗООКСИДАЗЫ НА МАГНИТООТДЕЛЯЕМЫХ ОКСИДАХ

https://doi.org/10.20914/2304-4691-2020-3-330-333

Об авторах

А. М. Сульман
Тверской государственный технический университет
Россия


О. В. Гребенникова
Тверской государственный технический университет
Россия


Е. М. Михайлова
Тверской государственный технический университет
Россия


М. Г. Сульман
Тверской государственный технический университет
Россия


В. Г. Матвеева
Тверской государственный технический университет
Россия


Список литературы

1. Pal, P.;Kumar, R.;Banerjee, S., Manufacture of Gluconic Acid: A Review Towards Process Intensification for Green Production. Chem. Eng. Process. 2016, 104, 160-171.

2. Mohamad, N.R.;Marzuki, N.H.;Buang, N.A.;Huyop, F.;Wahab, R.A., Review; Agriculture and Environmental Biotechnology. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotec. Eq. 2015, 29, 205-220.

3. Ahmad, R.;Sardar, M., Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix. Biochem. Anal. Biochem. 2015, 4, 1-8.

4. Chen, S.; Wen, L.; Svec, F.; Tan, T.; Lv, Y., Magnetic metal-organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis. RSC Adv. 2017, 7, 21205-21213.

5. Sulman, E.M.; Matveeva, V.G.; Bronstein, L.M., Design of biocatalysts for efficient catalytic processes. Current Opinion in Chemical Engineering. 2019, 26, 1-8.

6. Drout, R.J.; Robison, L.; Farha, O.K. Catalytic applications of enzymes encapsulated in metal-organicframeworks, Coord. Chem. Rev. 2019, 381, 151-160.

7. Sheldon, R.A.; Brady, D. The limits to biocatalysis: pushing the envelope. Chem. Commun. 2018, 54, 6088-6104.

8. Bilal, M.; Asgher, M.; Shah, S.Z.H.; Iqbal, H.M.N. Engineering enzyme-coupledhybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. Int. J. Biol. Macromol. 2019, 135, 677-690.

9. Тихонов, Б.Б.; Сульман, Э.М.; Стадольникова, П.Ю.; Сульман, А.М.; Голикова, Е.П.; Сидоров, А.И.; Матвеева, В.Г. Катализ в промышленности, 2019, 19(1), 59-72.

10. Vranish, J.N.; Ancona, M.G.; Walper, S.A.; Medintz, I.L. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. Langmuir, 2018, 34, 2901-2925.

11. Devine, P.N.; Howard, R.M.; Kumar, R.; Thompson, M.P.; Matthew D.; Truppo, M.D.; Turner, N.J. Extending the application of biocatalysis to meet the challenges of drug development. Nature Rev. Chem., 2018, 2, 409-421.

12. Kobayashi, Y.; Kohara, K.; Kiuchi, Y.; Onoda, H.; Shoji, O.; Yamaguchi, H. Control of microenvironment around enzymes by hydrogels. Chem. Commun., 2020, 56, 6723-6726.

13. Gao, L.; Fan, K.; Yan, X., Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics 2017, 7, 3207-3227.

14. Uc-Cayetano, E.G.; Ordóñez, L.C.; Cauich-Rodríguez, J.V.; Avilés, F., Enhancement of Electrochemical Glucose Sensing by Using Multiwall Carbon Nanotubes decorated with Iron Oxide Nanoparticles. Int. J. Electrochem. Sci. 2016, 11, 6356 -6369.

15. Krishnan, B.P.; Prieto-Lopez, L.O.; Hoefgen, S.; Xue, L.; Wang, S.; Valiante, V.; Cui, J. Thermomagneto-Responsive Smart Biocatalysts for Malonyl-Coenzyme A Synthesis,ACS Appl. Mater. Interfaces, 2020, 12, 20982-20990.

16. Shen, H.; Song, J.; Zhou, Z.; Li, M.; Zhang, R.; Su, P.; Yang, Y.DNA-Directed Immobilized Enzymes on Recoverable Magnetic Nanoparticles Shielded in Nucleotide Coordinated Polymers, Ind. Eng. Chem. Res., 2019, 58, 8585-8596.

17. Hilterhaus, L.; Liese, A.; Kettling, U.; Antranikian, G., Applied Biocatalysis: From Fundamental Science to Industrial Applications. Wiley-VCH: Weinheim, Germany, 2016; p 429.

18. Wang, Y.; Nor, Y.A.; Song, H.; Yang, Y.; Xu, C.; Yu, M.; Yu, C., Small-sized and large-poredendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. J. Mater. Chem. B 2016, 4, 2646-2653.

19. Gonzalez-Delgado, I.; Segura, Y.; Martin, A.; Lopez-Munoz, M. -J.; Morales, G., β-galactosidase covalent immobilization over large-poremesoporous silica supports for the production of high galacto-oligosaccharides(GOS). Microporous Mesoporous Mater. 2018, 257, 51-61.

20. Santos, K.M.A.; Albuquerque, E.M.; Innocenti, G.; Borges, L.E.P.; Sievers, C.; Fraga, M.A., The Role of Bronsted and Water- Tolerant Lewis Acid Sites in the Cascade Aqueous-Phase Reaction of Triose to Lactic Acid. ChemCatChem 2019,11, 3054- 3063.

21. Liu, J.; He, Y.; Yan, L.; Li, K.; Zhang, C.; Xiang, H.; Wen, X.; Li, Y., Nano-sizedZrO2 derived from metal-organicframeworks and their catalytic performance for aromatic synthesis from syngas. Catal. Sci. Technol. 2019,9, 2982-2992.


Рецензия

Для цитирования:


Сульман А.М., Гребенникова О.В., Михайлова Е.М., Сульман М.Г., Матвеева В.Г. ИММОБИЛИЗАЦИЯ ГЛЮКОЗООКСИДАЗЫ НА МАГНИТООТДЕЛЯЕМЫХ ОКСИДАХ. Актуальная биотехнология. 2020;(3):330-333. https://doi.org/10.20914/2304-4691-2020-3-330-333

Просмотров: 31


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)