ИММОБИЛИЗАЦИЯ ГЛЮКОЗООКСИДАЗЫ НА МАГНИТООТДЕЛЯЕМЫХ ОКСИДАХ
https://doi.org/10.20914/2304-4691-2020-3-330-333
Об авторах
А. М. СульманРоссия
О. В. Гребенникова
Россия
Е. М. Михайлова
Россия
М. Г. Сульман
Россия
В. Г. Матвеева
Россия
Список литературы
1. Pal, P.;Kumar, R.;Banerjee, S., Manufacture of Gluconic Acid: A Review Towards Process Intensification for Green Production. Chem. Eng. Process. 2016, 104, 160-171.
2. Mohamad, N.R.;Marzuki, N.H.;Buang, N.A.;Huyop, F.;Wahab, R.A., Review; Agriculture and Environmental Biotechnology. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotec. Eq. 2015, 29, 205-220.
3. Ahmad, R.;Sardar, M., Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix. Biochem. Anal. Biochem. 2015, 4, 1-8.
4. Chen, S.; Wen, L.; Svec, F.; Tan, T.; Lv, Y., Magnetic metal-organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis. RSC Adv. 2017, 7, 21205-21213.
5. Sulman, E.M.; Matveeva, V.G.; Bronstein, L.M., Design of biocatalysts for efficient catalytic processes. Current Opinion in Chemical Engineering. 2019, 26, 1-8.
6. Drout, R.J.; Robison, L.; Farha, O.K. Catalytic applications of enzymes encapsulated in metal-organicframeworks, Coord. Chem. Rev. 2019, 381, 151-160.
7. Sheldon, R.A.; Brady, D. The limits to biocatalysis: pushing the envelope. Chem. Commun. 2018, 54, 6088-6104.
8. Bilal, M.; Asgher, M.; Shah, S.Z.H.; Iqbal, H.M.N. Engineering enzyme-coupledhybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. Int. J. Biol. Macromol. 2019, 135, 677-690.
9. Тихонов, Б.Б.; Сульман, Э.М.; Стадольникова, П.Ю.; Сульман, А.М.; Голикова, Е.П.; Сидоров, А.И.; Матвеева, В.Г. Катализ в промышленности, 2019, 19(1), 59-72.
10. Vranish, J.N.; Ancona, M.G.; Walper, S.A.; Medintz, I.L. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies. Langmuir, 2018, 34, 2901-2925.
11. Devine, P.N.; Howard, R.M.; Kumar, R.; Thompson, M.P.; Matthew D.; Truppo, M.D.; Turner, N.J. Extending the application of biocatalysis to meet the challenges of drug development. Nature Rev. Chem., 2018, 2, 409-421.
12. Kobayashi, Y.; Kohara, K.; Kiuchi, Y.; Onoda, H.; Shoji, O.; Yamaguchi, H. Control of microenvironment around enzymes by hydrogels. Chem. Commun., 2020, 56, 6723-6726.
13. Gao, L.; Fan, K.; Yan, X., Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics 2017, 7, 3207-3227.
14. Uc-Cayetano, E.G.; Ordóñez, L.C.; Cauich-Rodríguez, J.V.; Avilés, F., Enhancement of Electrochemical Glucose Sensing by Using Multiwall Carbon Nanotubes decorated with Iron Oxide Nanoparticles. Int. J. Electrochem. Sci. 2016, 11, 6356 -6369.
15. Krishnan, B.P.; Prieto-Lopez, L.O.; Hoefgen, S.; Xue, L.; Wang, S.; Valiante, V.; Cui, J. Thermomagneto-Responsive Smart Biocatalysts for Malonyl-Coenzyme A Synthesis,ACS Appl. Mater. Interfaces, 2020, 12, 20982-20990.
16. Shen, H.; Song, J.; Zhou, Z.; Li, M.; Zhang, R.; Su, P.; Yang, Y.DNA-Directed Immobilized Enzymes on Recoverable Magnetic Nanoparticles Shielded in Nucleotide Coordinated Polymers, Ind. Eng. Chem. Res., 2019, 58, 8585-8596.
17. Hilterhaus, L.; Liese, A.; Kettling, U.; Antranikian, G., Applied Biocatalysis: From Fundamental Science to Industrial Applications. Wiley-VCH: Weinheim, Germany, 2016; p 429.
18. Wang, Y.; Nor, Y.A.; Song, H.; Yang, Y.; Xu, C.; Yu, M.; Yu, C., Small-sized and large-poredendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. J. Mater. Chem. B 2016, 4, 2646-2653.
19. Gonzalez-Delgado, I.; Segura, Y.; Martin, A.; Lopez-Munoz, M. -J.; Morales, G., β-galactosidase covalent immobilization over large-poremesoporous silica supports for the production of high galacto-oligosaccharides(GOS). Microporous Mesoporous Mater. 2018, 257, 51-61.
20. Santos, K.M.A.; Albuquerque, E.M.; Innocenti, G.; Borges, L.E.P.; Sievers, C.; Fraga, M.A., The Role of Bronsted and Water- Tolerant Lewis Acid Sites in the Cascade Aqueous-Phase Reaction of Triose to Lactic Acid. ChemCatChem 2019,11, 3054- 3063.
21. Liu, J.; He, Y.; Yan, L.; Li, K.; Zhang, C.; Xiang, H.; Wen, X.; Li, Y., Nano-sizedZrO2 derived from metal-organicframeworks and their catalytic performance for aromatic synthesis from syngas. Catal. Sci. Technol. 2019,9, 2982-2992.
Рецензия
Для цитирования:
Сульман А.М., Гребенникова О.В., Михайлова Е.М., Сульман М.Г., Матвеева В.Г. ИММОБИЛИЗАЦИЯ ГЛЮКОЗООКСИДАЗЫ НА МАГНИТООТДЕЛЯЕМЫХ ОКСИДАХ. Актуальная биотехнология. 2020;(3):330-333. https://doi.org/10.20914/2304-4691-2020-3-330-333