ФИЛОГЕНЕТИЧЕСКИЙ И ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ ГЕНОВ, АССОЦИИРОВАННЫХ С АПОМИКСИСОМ, CENH3 И APOLLO
https://doi.org/10.20914/2304-4691-2020-3-81-85
About the Authors
Е. БакинRussian Federation
Ф. Сезер
Russian Federation
М. Райко
Russian Federation
К. Таскин
Russian Federation
В. Брюхин
Russian Federation
References
1. Brukhin V. (2017) Molecular and Genetic Regulation of Apomixis. Russ J Genetics 53 (9), 1001-1024.
2. Brukhin V., Osadtchiy J.V., Florez-Rueda A.M., Smetanin D., Nobre M.S., Bakin E., Grossniklaus U. (2019) The Boechera Genus as a Resource for Apomixis Research. Frontiers in Plant Science -Special Issue Plant Breeding, March 2019, v. 10:392. doi: 10.3389/fpls.2019.00392.
3. Evtushenko, E.V.; Lipikhina, Y.A.; Stepochkin, P.I.; Vershinin, A.V. Cytogenetic and molecular characteristics of rye genome in octoploid triticale (× Triticosecale Wittmack).CCG 2019, 13, 423-434.
4. Karimi-Ashtiyani, R.; Ishii, T.; Niessen, M.; Stein, N.; Heckmann, S.; Gurushidze, M.; Banaei-Moghaddam, A.M.; Fuchs, J.; Schubert, V.; Koch, K.; et al. Point mutation impairs centromericCENH3 loading and induces haploid plants. Proc Natl Acad SciUSA 2015, 112, 11211-11216.
5. Kliver, S.; Rayko, M.; Komissarov, A.; Bakin, E.; Zhernakova, D.; Prasad, K.; Rushworth, C.; Baskar, R.; Smetanin, D.; Schmutz, J.; et al. Assembly of the Boechera retrofracta Genome and Evolutionary Analysis of Apomixis-Associated Genes. Genes 2018, 9(4), 185. doi: 10.3390/genes9040185.
6. Koch, M.A. Multiple Hybrid Formation in Natural Populations: Concerted Evolution of the Internal Transcribed Spacer of Nuclear Ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Molecular Biology and Evolution 2003, 20, 338-350.
7. Koltunow, A.M., and Grossniklaus, U. (2003). Apomixis: a developmental perspective. Annu. Rev. Plant Biol. 54, 547-574. doi: 10.1146/annurev.arplant.54.110901.16084
8. Lermontova, I.; Koroleva, O.; Rutten, T.; Fuchs, J.; Schubert, V.; Moraes, I.; Koszegi, D.; Schubert, I. Knockdown ofCENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation: Consequences of AtCENH3 depletion. The Plant Journal 2011, 68, 40-50.
9. Lermontova, I.; Sandmann, M.; Mascher, M.; Schmit, A. -C.; Chabouté, M. -E. Centromeric chromatin and its dynamics in plants. Plant J 2015, 83, 4-17.
10. Maheshwari, S.; Tan, E.H.; West, A.; Franklin, F.C.H.; Comai, L.; Chan, S.W.L. Naturally Occurring Differences inCENH3 Affect Chromosome Segregation in Zygotic Mitosis of Hybrids. PLoS Genet 2015, 11, e1004970.
11. Marimuthu, M.P.A.; Jolivet, S.; Ravi, M.; Pereira, L.; Davda, J.N.; Cromer, L.; Wang, L.; Nogue, F.; Chan, S.W.L.; Siddiqi, I.; et al. Synthetic Clonal Reproduction Through Seeds. Science 2011, 331, 876-876.
12. Ravi, M.; Chan, S.W.L. Haploid plants produced by centromere-mediated genome elimination. Nature 2010, 464, 615-618.
13. Ravi, M.; Shibata, F.; Ramahi, J.S.; Nagaki, K.; Chen, C.; Murata, M.; Chan, S.W.L. Meiosis-Specific Loading of the Centromere-Specific HistoneCENH3 in Arabidopsis thaliana. PLoS Genet 2011, 7, e1002121.
14. Talbert, P.B.; Henikoff, S. Histone variants -ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 2010, 11, 264-275.
Review
For citations:
, , , , . Topical biotechnology. 2020;(3):81-85. (In Russ.) https://doi.org/10.20914/2304-4691-2020-3-81-85