Preview

Актуальная биотехнология

Расширенный поиск

ПЕРСПЕКТИВЫ ПРОМЫШЛЕННОГО ИСПОЛЬЗОВАНИЯ КУЛЬТУРЫ MISCANTHUS ДЛЯ СНИЖЕНИЯ УГЛЕРОДНОГО СЛЕДА

https://doi.org/10.20914/2304-4691-2022-1-355-357

Об авторах

Н. А. Шавыркина
Институт проблем химико-энергетических технологий Сибирского отделения Российской академии наук
Россия


Ю. А. Гисматулина
Институт проблем химико-энергетических технологий Сибирского отделения Российской академии наук
Россия


Список литературы

1. Holmatov B., Hoekstra A.Y., Krol M.S. Land, water and carbon footprints of circular bioenergy production systems //Renewable and Sustainable Energy Reviews. 2019. 111. P. 224-235. https://doi.org/10.1016/j.rser.2019.04.085.

2. Velvizhi G. et al. Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint //Fuel. 2022. 313. P. 122678. https://doi.org/10.1016/j.fuel.2021.122678.

3. Gross R., Leach M., Bauen A. Progress in renewable energy //Environment international. 2003. 29. No. 1. P. 105-122. https://doi.org/10.1016/S0160-4120(02)00130-7.

4. Hassain A., Arif S.M., Aslam M. 20017 //Emerging renewable nergy technologies: state of the art. Renewable and sustainable review. 2017.

5. P. 12-28. https://doi.org/10.1016/j.rser.2016.12.033.

6. Cintas O. et al. Carbon balances of bioenergy systems using biomass from forests managed with long rotations: Bridging the gap between stand and landscape assessments //GCB Bioenergy. 2017. 9. No 7. P. 1238-1251. https://doi.org/10.1111/gcbb.12425.

7. Kuna E. et al. Sonocatalysis: a potential sustainable pathway for the valorization of lignocellulosic biomass and derivatives //Chemistry and chemical technologies in waste valorization. 2017. P. 1-20.

8. Vanneste J. et al. Unconventional pretreatment of lignocellulose with low-temperature plasma //ChemSusChem. 2017. 10. No 1. P. 14-31. https://doi.org/10.1002/cssc.201601381.

9. Tekin K., Karagöz S. Bektas, S1:CAS: 528:DC % 2ВС2сХhsVSntLrL: A review of hydrothermal biomass processing. vol. //Renewable and Sustainable Energy Reviews. 2014. P. 673-687. https://doi.org/10.1016/j.rser.2014.07.216.

10. Gunnarsson I.B. et al. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop //Industrial Crops and Products. 2014.

11. P. 231-240. https://doi.org/10.1016/j.indcrop.2019.01.024.

12. Blätke M.A., Bräutigam A. Evolution of С4 photosynthesis predicted by constraint-based modelling //Elife. 2019. 8. https://doi.org/10.7554/еLifе.49305.

13. Lobell, David B., et al. Prioritizing climate change adaptation needs for food security in 2030 // Science. 2008. 319.5863. P. 607-610.DOI: 10.1126/science.1152339.

14. Heaton E.A. et al. Miscanthus for renewable energy generation: European Union experience and projections for Illinois //Mitigation and Adaptation Strategies for Global Change. 2004. 9. No 4. P. 433-451.

15. Heaton E., Voigt T., Long S.P. A quantitative review comparing the yields of two candidate С4 perennial biomass crops in relation to nitrogen, temperature and water //Biomass and bioenergy. 2004. 27. No 1. P. 21-30.

16. Анисимов А.А., Хохлов Н.Ф., Тараканов И.Г. Мискантус (Miscanthus Spp.) в России: возможности и перспективы // Новые и нетрадиционные растения и перспективы их использования. 2016. № 12. С. 3-5.

17. Arnoult S., Brancourt-Hulmel M. A review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding //BioEnergy Research. 2015. 8. No 2. P. 502-526.

18. Булаткин Г.А. и др. Энергетическая и экологическая эффективность выращивания растительной биомассы мискантуса китайского вЦФО России // Использование и охрана природных ресурсов в России. 2015. № 6. С. 39-45.

19. Капустянчик С.Ю., и др. Продуктивность мискантуса сорта Сорановский первого года вегетации и дыхательная активность почвы // Научно-практический журнал Пермский аграрный вестник. 2016. № 4 (16). С. 82-87.

20. Булаткин Г.А., и др. Энергетическая и экологическая эффективность выращивания растительной биомассы мискантуса китайского вЦФО России // Использование и охрана природных ресурсов в России. 2015. № 6 (144). С. 39-45.

21. Гисматулина, Ю.А., и др. Особенности ресурсного вида Miscanthus sacchariflorus (Maxim.) Hack. при интродукции в Западной Сибири // Вавиловский журнал генетики и селекции. 2019. 23.7. C. 933-940. https://doi.org/10.18699/VJ19.569.

22. Fusi A. et al. Pellet Production from Miscanthus: Energy and Environmental Assessment //Energies. 2020. 14. No 1. P. 73.

23. Thomas H.L. et al. Methane production variability according to miscanthus genotype and alkaline pretreatments at high solid content //BioEnergy Research. 2019. 12. No 2. P. 325-337. https://doi.org/10.1007/s12155-018-9957-5.

24. Капустянчик, С.Ю., и др. Мискантус-перспективная энергетическая культура для промышленной переработки // Экология и промышленность России. 2021. 25.

25. Skiba E.A. et al. Miscanthus bioprocessing usingНNО3-pretreatment to improve productivity and quality of bioethanol and downstream ethylene //Industrial Crops and Products. 2022. 177. P. 114448. https://doi.org/10.1016/j.indcrop.2021.114448.

26. Kowalczyk-Juśko A. et al. Evaluation of the Effects of Using the Giant Miscanthus (Miscanthus Giganteus) Biomass in Various Energy Conversion Processes //Energies. 2022. 15. No 10. P. 3486. https://doi.org/10.3390/en15103486.

27. Nebeská D. et al. Miscanthus giganteus role in phytodegradation and changes in bacterial community of soil contaminated by petroleum industry //Ecotoxicology and Environmental Safety. 2021. 224. P. 112630. https://doi.org/10.1016/j.ecoenv.2021.112630.

28. Ntimugura F. et al. Environmental performance of miscanthus-lime lightweight concrete using life cycle assessment: Application in external wall assemblies //Sustainable Materials and Technologies. 2021. 28. P. е00253.

29. Park H.J., Oh S.W., Wen M.Y. Manufacture and properties of Miscanthus-wood particle composite boards //Journal of wood Science. 2012. 58. No 5. P. 459-464. https://doi.org/10.1007/s10086-012-1262-x.

30. Wang T. et al. Sustainable carbonaceous biofiller from miscanthus: Size reduction, characterization, and potential bio- composites applications //BioResources. 2018. 13. No 2. P. 3720-3739.DOI:10.15376/biores.13.2.3720-3739.

31. Wolfzorn, J. ; Harding, D. ; Davis, A. ; Santiago, M. ; Porr, C. Miscanthus and hemp as alternative bedding material for horses // J. Equine Vet. Sci. 2019. 76. P. 97-98. https://digitalcommons.murraystate.edu/orcagrants/45.

32. Tsalagkas D. et al. Assessment of the papermaking potential of processed Miscanthus giganteus stalks using alkaline pre- treatment and hydrodynamic cavitation for delignification //Ultrasonics sonochemistry. 2021. 72. P. 105462.

33. Barbash V.A., Yashchenko O.V., Vasylieva O.A. Preparation and application of nanocellulose from Miscanthus giganteus to improve the quality of paper for bags //SN Applied Sciences. 2020. 2. No. 4. P. 1-12. https://doi.org/10.1007/s42452-020-2529-2.

34. Gismatulina Y.A., Budaeva V.V. Chemical composition of five Miscanthus sinensis harvests and nitric-acid cellulose therefrom //Industrial Crops and Products. 2017.

35. P. 227-232.DOI: 10.1016/j.indcrop.2017.08.026.

36. Skiba E. А. et al. Self-standardization of quality of bacterial cellulose produced by Medusomyces gisevii in nutrient media derived from Miscanthus biomass //Carbohydrate Polymers. 2021. 252. P. 117178. https://doi.org/10.1016/j.carbpol.2020.117178.

37. Son J. et al. Enhanced Production of Bacterial Cellulose from Miscanthus as Sustainable Feedstock through Statistical Optimization of Culture Conditions //International Journal of Environmental Research and Public Health. 2022. 19. No. 2. P. 866.

38. Xiang J., Wang X., Sang T. Cellulase production from Trichoderma reeseiRUT С30 induced by continuous feeding of steam- exploded Miscanthus lutarioriparius //Industrial Crops and Products. 2021. 160. P. 113129.

39. Götz M. et al. Processing Miscanthus to high-value chemicals: A techno-economic analysis based on process simulation //GCB Bioenergy. 2022. 14. No 4. P. 447-462. https://doi.org/10.1111/gcbb.12923.

40. Pang J. et al. Catalytic conversion of concentrated miscanthus in water for ethylene glycol production //АIСhЕ Journal. 2014. No 6. P. 2254-2262. https://doi.org/10.1002/aic.14406.


Рецензия

Для цитирования:


Шавыркина Н.А., Гисматулина Ю.А. ПЕРСПЕКТИВЫ ПРОМЫШЛЕННОГО ИСПОЛЬЗОВАНИЯ КУЛЬТУРЫ MISCANTHUS ДЛЯ СНИЖЕНИЯ УГЛЕРОДНОГО СЛЕДА. Актуальная биотехнология. 2022;(1):355-357. https://doi.org/10.20914/2304-4691-2022-1-355-357

Просмотров: 31


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)