Preview

Topical biotechnology

Advanced search

ИММОБИЛИЗОВАННЫЕ В СИЛИКАГЕЛИ ЖИВЫЕ КЛЕТКИ: МЕТОДИЧЕСКИЕ АСПЕКТЫ ПОЛУЧЕНИЯ И БИОТЕХНОЛОГИЧЕСКИЙ ПОТЕНЦИАЛ

https://doi.org/10.20914/2304-4691-2019-3-472-480

About the Authors

О. Понаморева
Тульский государственный университет
Russian Federation


В. Алферов
Тульский государственный университет
Russian Federation


References

1. Danks, A. E., S. R. Hall and Z. Schnepp. The evolution of 'sol-gel' chemistry as a technique for materials synthesis. Materials Horizons. 2016. 3(2): 91-112.

2. Kumar, S., M. M. Malik and R. Purohit. Synthesis methods of mesoporous silica materials. Materials Today: Proceedings. 2017. 4(2): 350-357.

3. Narayan, R., U. Y. Nayak, A. M. Raichur and S. Garg. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. 2018. Pharmaceutics. 10(3): 118.

4. Avnir, D., T. Coradin, O. Lev and J. Livage. Recent bio-applications of sol-gel materials. Journal of Materials Chemistry. 2006. 16(11): 1013-1030.

5. Gupta, R. and A. Kumar. Molecular imprinting in sol-gel matrix. Biotechnol Adv. 2008. 26(6): 533-547.

6. Boury, B. and R. J. P. Corriu. Auto-organisation of hybrid organic-inorganic materials prepared by sol-gel chemistry. Chemical Communications. 2002. (8): 795-802.

7. Depagne, C., C. Roux and T. Coradin. How to design cell-based biosensors using the sol-gel process. Anal Bioanal Chem. 2011. 400(4): 965-976.

8. Jones, J. R. Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia. 2013. 9(1): 4457-4486.

9. Bagheri, E., L. Ansari, K. Abnous, S. M. Taghdisi, F. Charbgoo, M. Ramezani and M. Alibolandi. Silica based hybrid materials for drug delivery and bioimaging. Journal of Controlled Release. 2018. 277: 57-76.

10. Meunier, C. F., P. Dandoy and B. L. Su. Encapsulation of cells within silica matrixes: Towards a new advance in the conception of living hybrid materials. J Colloid Interface Sci. 2010. 342(2): 211-224.

11. Blondeau, M. and T. Coradin. Living materials from sol-gel chemistry: current challenges and perspectives. Journal of Materials Chemistry. 2012. 22(42): 22335.

12. Nassif, N. and J. Livage. From diatoms to silica-based biohybrids. Chem Soc Rev. 2011. 40(2): 849-859.

13. Park, J. H., D. Hong, J. Lee and I. S. Choi. Cell-in-shell hybrids: chemical nanoencapsulation of individual cells. Accounts of Chemical Research. 2016. 49(5): 792-800.

14. Yang, S. H., D. Hong, J. Lee, E. H. Ko and I. S. Choi. Artificial spores: cytocompatible encapsulation of individual living cells within thin, tough artificial shells. Small. 2013. 9(2): 178-186.

15. Brinker, C. J. and G. W. Scherer. Sol-Gel Science. The Physics and Chemistry of Sol-Gel Process., Academic Press. 1990. - 908 p.

16. Gupta, R. and N. K. Chaudhury. Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron. 2007. 22(11): 2387-2399.

17. Kupareva, A., P. Mäki-Arvela, H. Grénman, K. Eränen and D. Y. Murzin. The base-catalyzed transformation of tetramethyldisiloxane: influence of reaction media. Journal of Chemical Technology and Biotechnology. 2015. 90(1): 34-43.

18. Landry C.J.. et al. In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions. Polymer (Guildf). 1992. 33(7): 1496-1506.

19. Pandey, S. and S. B. Mishra. Sol-gel derived organic-inorganic hybrid materials: synthesis, characterizations and applications. Journal of Sol-Gel Science and Technology. 2011. 59(1): 73-94.

20. Gorbunova, O. V., O. N. Baklanova, T. I. Gulyaeva, M. V. Trenikhin and V. A. Drozdov. Poly(ethylene glycol) as structure directing agent in sol-gel synthesis of amorphous silica. Microporous and Mesoporous Materials. 2014. 190: 146-151.

21. Carturan G, Campostrini R, Diré S, Scardi V, De Alteriis E. Inorganic gels for immobilization of biocatalysts: inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets. Journal of Molecular Catalysis. 1989. 57(1):L13-L6.

22. Inama L, Diré S, Carturan G, Cavazza A. Entrapment of viable microorganisms by SiO2 sol-gel layers on glass surfaces: trapping, catalytic performance and immobilization durability of Saccharomyces cerevisiae. J Biotechnol. 1993. 30(2):197-200.

23. Liu, L., L. Shang, S. Guo, D. Li, C. Liu, L. Qi and S. Dong. Organic-inorganic hybrid material for the cells immobilization: long-term viability mechanism and application in BOD sensors. Biosens Bioelectron. 2009. 25(2): 523-526.

24. Nassif N, Bouvet O, Noelle Rager M, Roux C, Coradin T, Livage J. Living bacteria in silica gels. Nature materials. 2002. 1(1):42-4.

25. Niu X, Wang Z, Li Y, Zhao Z, Liu J, Jiang L, et al. “Fish-in-Net”, a Novel Method for Cell Immobilization of Zymomonas mobilis. PloS one. 2013. 8(11):e79569.

26. Ferrer ML, Yuste L, Rojo F, del Monte F. Biocompatible sol-gel route for encapsulation of living bacteria in organically modified silica matrixes. Chemistry of Materials. 2003. 15(19):3614-8.

27. Desimone MF, Alvarez GS, Foglia ML, Diaz LE. Development of sol-gel hybrid materials for whole cell immobilization. Recent Patents on Biotechnology. 2009. 3(1):55-60.

28. Meunier CF, Rooke JC, Leonard A, Xie H, Su B-L. Living hybrid materials capable of energy conversion and CO2 assimilation. Chemical Communications. 2010. 46(22):3843-59.

29. Boninsegna, S., P. Bosetti, G. Carturan, G. Dellagiacoma, R. Dal Monte and M. Rossi. Encapsulation of individual pancreatic islets by sol-gel SiO2: A novel procedure for perspective cellular grafts. Journal of Biotechnology. 2003. 100(3): 277-286.

30. Carturan G, Dal Toso R, Boninsegna S, Dal Monte R. Encapsulation of functional cells by sol-gel silica: actual progress and perspectives for cell therapy. Journal of Materials Chemistry. 2004. 14(14):2087-98.

31. Perullini M, Jobbágy M, Mouso N, Forchiassin F, Bilmes SA. Silica-alginate-fungi biocomposites for remediation of polluted water. Journal of Materials Chemistry. 2010. 20(31):6479-83.

32. Spedalieri, C., C. Sicard, M. Perullini, R. Brayner, T. Coradin, J. Livage, S. A. Bilmes and M. Jobbágy. Silica@proton-alginate microreactors: a versatile platform for cell encapsulation. Journal of Materials Chemistry B. 2015. 3(16): 3189-3194.

33. Kuncová, G. and Trögl J. Physiology of microorganisms immobilized into inorganic polymers. Handbook of Inorganic Chemistry Research. D. A. Morrison, Nova Science Publishers. 2010. pp: 53-101.

34. Stober, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968. 26:62-69.

35. Baca, H. K., E. Carnes, S. Singh, C. Ashley, D. Lopez and C. J. Brinker. Cell-directed assembly of bio/nano interfaces - a new scheme for cell immobilization. Accounts of Chemical Research. 2007. 40(9): 836-845.

36. Harper, J. C., C. Y. Khirpin, E. C. Carnes, C. E. Ashley, D. M. Lopez, T. Savage, H. D. T. Jones, R. W. Davis, D. E. Nunez, L. M. Brinker, B. Kaehr, S. M. Brozik and C. J. Brinker. Cell-Directed Integration into Three-Dimensional Lipid-Silica Nanostructured Matrices. ACS Nano. 2010. 4(10): 5539-5550.

37. Baca, H. K., E. C. Carnes, C. E. Ashley, D. M. Lopez, C. Douthit, S. Karlin and C. J. Brinker (). Cell-directed-assembly: Directing the formation of nano/bio interfaces and architectures with living cells. Biochimica et biophysica acta. 2011. 1810(3): 259-267.

38. Johnson, P. E., P. Muttil, D. MacKenzie, E. C. Carnes, J. Pelowitz, N. A. Mara, W. M. Mook, S. D. Jett, D. R. Dunphy, G. S. Timmins and C. J. Brinker. Spray-dried multiscale nano-biocomposites containing living cells. ACS Nano. 2015. 9(7): 6961-6977.

39. Fazal, Z., J. Pelowitz, P. E. Johnson, J. C. Harper, C. J. Brinker and E. Jakobsson. Three-dimensional encapsulation of Saccharomyces cerevisiae in silicate matrices creates distinct metabolic states as revealed by gene chip analysis. ACS Nano. 2017. 11(4): 3560-3575.

40. Каманина О.А., Федосеева Д.Г., Мачулин А.В.,. Алферов В.А, Понаморева О.Н. Микроорганизмы и кремнийорганические золь-гель структуры: синергизм формирования архитектуры биоматрикса. Атуальная биотехнологияю 2014. № 3 (10):35-36.

41. Ponamoreva O., Kamanina O., Alferov V., Machulin A., Rogova T., Arlyapov V., Alferov S., Suzina N., Ivanova E.., Yeast-based self-organized hybrid bio-silica sol-gels for the design of biosensors. Biosensors and Bioelectronics. 2015. 67:321-326.

42. Kamanina O., Lavrova D., Arlyapov V., Alferov V., Ponamoreva O. Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater. Enzyme and Microbial Technology. 2016. 92:94-98.

43. Каманина О.А., Бурмистрова Т.В., Лаврова Д.Г., Мачулин А.В., Понаморева О.Н. Клетки микроорганизмов как структурообразующие агенты в синтезе гибридных кремнийорганических материалов с применением золь-гель технологии. Известия Тульского государственного университета. 2016. №1:3-11.

44. Lavrova D., Kamanina O., Machulin A., Suzina N., Alferov V., Ponamoreva O. Effect of polyethylene glycol additives on structure, stability, and biocatalytic activity of ormosil sol-gel encapsulated yeast cells. Journal of Sol-Gel Science and Technology. 2018. 88:1-5.

45. Ponamoreva, O.N., Lavrova, D.G., Kamanina, O.A., Rybochkin, P.V. Machulin, A.V. Alferov, V.A. Biohybrid of methylotrophic yeast and organically modified silica gels from sol-gel chemistry of tetraethoxysilane and dimethyldiethoxysilane. Journal of Sol-Gel Science and Technology. 2019. https://doi.org/10.1007/s10971-019-04967-8

46. Каманина О.А, Бурмистрова Т.В., Лаврова Д.Г., Понаморева О.Н. Биогибридные материалы на основе силановых прекурсоров и клеток метилотрофных дрожжей. Актуальная биотехнология. 2016. № 3(18): 97-100.

47. Понаморева О.Н., Алферов В.А., Каманина О.А., Мачулин А.В., Федосеева Д.Г. Гибридные биоматериалы на основе инкапсулированных в органосиликатные материалы метилотрофных дрожжей и их применение в биосенсорном анализе. Известия Тульского государственного университета. 2015. №1:124-132.

48. Каманина О.А., Афонина Е.Л., Понаморева О.Н., Строителев В.В. БПК-биосенсор на основе инкапсулированных в органосиликатную матрицу дрожжей Debaryomyces hansenii. Актуальная биотехнология. 2015. № 3(14):66-67.

49. Понаморева О.Н., Афонина Е.Л., Каманина О.А., Лаврова Д.Г., Арляпов В.А., Алферов В.А., Боронин А.М. Дрожжи Debaryomyces hansenii в органосиликатной оболочке как основа гетерогенного биокатализатор. Биотехнология. 2017. 33(4):44-53.

50. Ponamoreva O.N., Afonina E.L., Kamanina O.A., Lavrova D.G., Arliapov V.A., Alferov V.A., Boronin A.M. Yeast Debaryomyces hansenii within ORMOSIL shells as a heterogeneous biocatalyst. Applied Biochemistry and Microbiology. 2018. 54(7): 24-30.

51. Понаморева О.Н. Биомиметические материалы: инкапсулированные в золь-гель кремнезема клетки микроорганизмов. Известия Тульского государственного университета. 2016. №2: 42-52.

52. Понаморева О.Н., Алферов В.А. Биомиметические материалы на основе инкапсулированных в ормосил клеток дрожжей как перспективные биокатализаторы для экобиотехнологии. Актуальная биотехнология. 2017. № 2(21):114-118.


Review

For citations:


 ,   . Topical biotechnology. 2019;(3):472-480. (In Russ.) https://doi.org/10.20914/2304-4691-2019-3-472-480

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)