ИММОБИЛИЗОВАННЫЕ В СИЛИКАГЕЛИ ЖИВЫЕ КЛЕТКИ: МЕТОДИЧЕСКИЕ АСПЕКТЫ ПОЛУЧЕНИЯ И БИОТЕХНОЛОГИЧЕСКИЙ ПОТЕНЦИАЛ
https://doi.org/10.20914/2304-4691-2019-3-472-480
About the Authors
О. ПонамореваRussian Federation
В. Алферов
Russian Federation
References
1. Danks, A. E., S. R. Hall and Z. Schnepp. The evolution of 'sol-gel' chemistry as a technique for materials synthesis. Materials Horizons. 2016. 3(2): 91-112.
2. Kumar, S., M. M. Malik and R. Purohit. Synthesis methods of mesoporous silica materials. Materials Today: Proceedings. 2017. 4(2): 350-357.
3. Narayan, R., U. Y. Nayak, A. M. Raichur and S. Garg. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. 2018. Pharmaceutics. 10(3): 118.
4. Avnir, D., T. Coradin, O. Lev and J. Livage. Recent bio-applications of sol-gel materials. Journal of Materials Chemistry. 2006. 16(11): 1013-1030.
5. Gupta, R. and A. Kumar. Molecular imprinting in sol-gel matrix. Biotechnol Adv. 2008. 26(6): 533-547.
6. Boury, B. and R. J. P. Corriu. Auto-organisation of hybrid organic-inorganic materials prepared by sol-gel chemistry. Chemical Communications. 2002. (8): 795-802.
7. Depagne, C., C. Roux and T. Coradin. How to design cell-based biosensors using the sol-gel process. Anal Bioanal Chem. 2011. 400(4): 965-976.
8. Jones, J. R. Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia. 2013. 9(1): 4457-4486.
9. Bagheri, E., L. Ansari, K. Abnous, S. M. Taghdisi, F. Charbgoo, M. Ramezani and M. Alibolandi. Silica based hybrid materials for drug delivery and bioimaging. Journal of Controlled Release. 2018. 277: 57-76.
10. Meunier, C. F., P. Dandoy and B. L. Su. Encapsulation of cells within silica matrixes: Towards a new advance in the conception of living hybrid materials. J Colloid Interface Sci. 2010. 342(2): 211-224.
11. Blondeau, M. and T. Coradin. Living materials from sol-gel chemistry: current challenges and perspectives. Journal of Materials Chemistry. 2012. 22(42): 22335.
12. Nassif, N. and J. Livage. From diatoms to silica-based biohybrids. Chem Soc Rev. 2011. 40(2): 849-859.
13. Park, J. H., D. Hong, J. Lee and I. S. Choi. Cell-in-shell hybrids: chemical nanoencapsulation of individual cells. Accounts of Chemical Research. 2016. 49(5): 792-800.
14. Yang, S. H., D. Hong, J. Lee, E. H. Ko and I. S. Choi. Artificial spores: cytocompatible encapsulation of individual living cells within thin, tough artificial shells. Small. 2013. 9(2): 178-186.
15. Brinker, C. J. and G. W. Scherer. Sol-Gel Science. The Physics and Chemistry of Sol-Gel Process., Academic Press. 1990. - 908 p.
16. Gupta, R. and N. K. Chaudhury. Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron. 2007. 22(11): 2387-2399.
17. Kupareva, A., P. Mäki-Arvela, H. Grénman, K. Eränen and D. Y. Murzin. The base-catalyzed transformation of tetramethyldisiloxane: influence of reaction media. Journal of Chemical Technology and Biotechnology. 2015. 90(1): 34-43.
18. Landry C.J.. et al. In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions. Polymer (Guildf). 1992. 33(7): 1496-1506.
19. Pandey, S. and S. B. Mishra. Sol-gel derived organic-inorganic hybrid materials: synthesis, characterizations and applications. Journal of Sol-Gel Science and Technology. 2011. 59(1): 73-94.
20. Gorbunova, O. V., O. N. Baklanova, T. I. Gulyaeva, M. V. Trenikhin and V. A. Drozdov. Poly(ethylene glycol) as structure directing agent in sol-gel synthesis of amorphous silica. Microporous and Mesoporous Materials. 2014. 190: 146-151.
21. Carturan G, Campostrini R, Diré S, Scardi V, De Alteriis E. Inorganic gels for immobilization of biocatalysts: inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets. Journal of Molecular Catalysis. 1989. 57(1):L13-L6.
22. Inama L, Diré S, Carturan G, Cavazza A. Entrapment of viable microorganisms by SiO2 sol-gel layers on glass surfaces: trapping, catalytic performance and immobilization durability of Saccharomyces cerevisiae. J Biotechnol. 1993. 30(2):197-200.
23. Liu, L., L. Shang, S. Guo, D. Li, C. Liu, L. Qi and S. Dong. Organic-inorganic hybrid material for the cells immobilization: long-term viability mechanism and application in BOD sensors. Biosens Bioelectron. 2009. 25(2): 523-526.
24. Nassif N, Bouvet O, Noelle Rager M, Roux C, Coradin T, Livage J. Living bacteria in silica gels. Nature materials. 2002. 1(1):42-4.
25. Niu X, Wang Z, Li Y, Zhao Z, Liu J, Jiang L, et al. “Fish-in-Net”, a Novel Method for Cell Immobilization of Zymomonas mobilis. PloS one. 2013. 8(11):e79569.
26. Ferrer ML, Yuste L, Rojo F, del Monte F. Biocompatible sol-gel route for encapsulation of living bacteria in organically modified silica matrixes. Chemistry of Materials. 2003. 15(19):3614-8.
27. Desimone MF, Alvarez GS, Foglia ML, Diaz LE. Development of sol-gel hybrid materials for whole cell immobilization. Recent Patents on Biotechnology. 2009. 3(1):55-60.
28. Meunier CF, Rooke JC, Leonard A, Xie H, Su B-L. Living hybrid materials capable of energy conversion and CO2 assimilation. Chemical Communications. 2010. 46(22):3843-59.
29. Boninsegna, S., P. Bosetti, G. Carturan, G. Dellagiacoma, R. Dal Monte and M. Rossi. Encapsulation of individual pancreatic islets by sol-gel SiO2: A novel procedure for perspective cellular grafts. Journal of Biotechnology. 2003. 100(3): 277-286.
30. Carturan G, Dal Toso R, Boninsegna S, Dal Monte R. Encapsulation of functional cells by sol-gel silica: actual progress and perspectives for cell therapy. Journal of Materials Chemistry. 2004. 14(14):2087-98.
31. Perullini M, Jobbágy M, Mouso N, Forchiassin F, Bilmes SA. Silica-alginate-fungi biocomposites for remediation of polluted water. Journal of Materials Chemistry. 2010. 20(31):6479-83.
32. Spedalieri, C., C. Sicard, M. Perullini, R. Brayner, T. Coradin, J. Livage, S. A. Bilmes and M. Jobbágy. Silica@proton-alginate microreactors: a versatile platform for cell encapsulation. Journal of Materials Chemistry B. 2015. 3(16): 3189-3194.
33. Kuncová, G. and Trögl J. Physiology of microorganisms immobilized into inorganic polymers. Handbook of Inorganic Chemistry Research. D. A. Morrison, Nova Science Publishers. 2010. pp: 53-101.
34. Stober, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968. 26:62-69.
35. Baca, H. K., E. Carnes, S. Singh, C. Ashley, D. Lopez and C. J. Brinker. Cell-directed assembly of bio/nano interfaces - a new scheme for cell immobilization. Accounts of Chemical Research. 2007. 40(9): 836-845.
36. Harper, J. C., C. Y. Khirpin, E. C. Carnes, C. E. Ashley, D. M. Lopez, T. Savage, H. D. T. Jones, R. W. Davis, D. E. Nunez, L. M. Brinker, B. Kaehr, S. M. Brozik and C. J. Brinker. Cell-Directed Integration into Three-Dimensional Lipid-Silica Nanostructured Matrices. ACS Nano. 2010. 4(10): 5539-5550.
37. Baca, H. K., E. C. Carnes, C. E. Ashley, D. M. Lopez, C. Douthit, S. Karlin and C. J. Brinker (). Cell-directed-assembly: Directing the formation of nano/bio interfaces and architectures with living cells. Biochimica et biophysica acta. 2011. 1810(3): 259-267.
38. Johnson, P. E., P. Muttil, D. MacKenzie, E. C. Carnes, J. Pelowitz, N. A. Mara, W. M. Mook, S. D. Jett, D. R. Dunphy, G. S. Timmins and C. J. Brinker. Spray-dried multiscale nano-biocomposites containing living cells. ACS Nano. 2015. 9(7): 6961-6977.
39. Fazal, Z., J. Pelowitz, P. E. Johnson, J. C. Harper, C. J. Brinker and E. Jakobsson. Three-dimensional encapsulation of Saccharomyces cerevisiae in silicate matrices creates distinct metabolic states as revealed by gene chip analysis. ACS Nano. 2017. 11(4): 3560-3575.
40. Каманина О.А., Федосеева Д.Г., Мачулин А.В.,. Алферов В.А, Понаморева О.Н. Микроорганизмы и кремнийорганические золь-гель структуры: синергизм формирования архитектуры биоматрикса. Атуальная биотехнологияю 2014. № 3 (10):35-36.
41. Ponamoreva O., Kamanina O., Alferov V., Machulin A., Rogova T., Arlyapov V., Alferov S., Suzina N., Ivanova E.., Yeast-based self-organized hybrid bio-silica sol-gels for the design of biosensors. Biosensors and Bioelectronics. 2015. 67:321-326.
42. Kamanina O., Lavrova D., Arlyapov V., Alferov V., Ponamoreva O. Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater. Enzyme and Microbial Technology. 2016. 92:94-98.
43. Каманина О.А., Бурмистрова Т.В., Лаврова Д.Г., Мачулин А.В., Понаморева О.Н. Клетки микроорганизмов как структурообразующие агенты в синтезе гибридных кремнийорганических материалов с применением золь-гель технологии. Известия Тульского государственного университета. 2016. №1:3-11.
44. Lavrova D., Kamanina O., Machulin A., Suzina N., Alferov V., Ponamoreva O. Effect of polyethylene glycol additives on structure, stability, and biocatalytic activity of ormosil sol-gel encapsulated yeast cells. Journal of Sol-Gel Science and Technology. 2018. 88:1-5.
45. Ponamoreva, O.N., Lavrova, D.G., Kamanina, O.A., Rybochkin, P.V. Machulin, A.V. Alferov, V.A. Biohybrid of methylotrophic yeast and organically modified silica gels from sol-gel chemistry of tetraethoxysilane and dimethyldiethoxysilane. Journal of Sol-Gel Science and Technology. 2019. https://doi.org/10.1007/s10971-019-04967-8
46. Каманина О.А, Бурмистрова Т.В., Лаврова Д.Г., Понаморева О.Н. Биогибридные материалы на основе силановых прекурсоров и клеток метилотрофных дрожжей. Актуальная биотехнология. 2016. № 3(18): 97-100.
47. Понаморева О.Н., Алферов В.А., Каманина О.А., Мачулин А.В., Федосеева Д.Г. Гибридные биоматериалы на основе инкапсулированных в органосиликатные материалы метилотрофных дрожжей и их применение в биосенсорном анализе. Известия Тульского государственного университета. 2015. №1:124-132.
48. Каманина О.А., Афонина Е.Л., Понаморева О.Н., Строителев В.В. БПК-биосенсор на основе инкапсулированных в органосиликатную матрицу дрожжей Debaryomyces hansenii. Актуальная биотехнология. 2015. № 3(14):66-67.
49. Понаморева О.Н., Афонина Е.Л., Каманина О.А., Лаврова Д.Г., Арляпов В.А., Алферов В.А., Боронин А.М. Дрожжи Debaryomyces hansenii в органосиликатной оболочке как основа гетерогенного биокатализатор. Биотехнология. 2017. 33(4):44-53.
50. Ponamoreva O.N., Afonina E.L., Kamanina O.A., Lavrova D.G., Arliapov V.A., Alferov V.A., Boronin A.M. Yeast Debaryomyces hansenii within ORMOSIL shells as a heterogeneous biocatalyst. Applied Biochemistry and Microbiology. 2018. 54(7): 24-30.
51. Понаморева О.Н. Биомиметические материалы: инкапсулированные в золь-гель кремнезема клетки микроорганизмов. Известия Тульского государственного университета. 2016. №2: 42-52.
52. Понаморева О.Н., Алферов В.А. Биомиметические материалы на основе инкапсулированных в ормосил клеток дрожжей как перспективные биокатализаторы для экобиотехнологии. Актуальная биотехнология. 2017. № 2(21):114-118.
Review
For citations:
, . Topical biotechnology. 2019;(3):472-480. (In Russ.) https://doi.org/10.20914/2304-4691-2019-3-472-480