Preview

Актуальная биотехнология

Расширенный поиск

ФЕРМЕНТЫ БИОСИНТЕЗА ОКСИЛИПИНОВ: ПОЛУЧЕНИЕ И БИОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА

https://doi.org/10.20914/2304-4691-2021-1-285-286

Об авторах

С. С. Горина
Казанский институт биохимии и биофизики
Россия


Л. Ш. Мухтарова
Казанский институт биохимии и биофизики
Россия


Я. Ю. Топоркова
Казанский институт биохимии и биофизики
Россия


А. Н. Гречкин
Казанский институт биохимии и биофизики
Россия


Список литературы

1. Andreou A., Brodhun F., Feussner I. Biosynthesis of oxylipins in non-mammals. Prog Lipid Res. 2009. 48, 148-170.

2. Griffiths G. Biosynthesis and analysis of plant oxylipins. Free Radic Res. 2015. 49(5), 565-82.

3. Funk C.D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001. 294, 1871-1875.

4. Wasternack C., Hause. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot. 2013. 111, 1021-58.

5. Griffiths G. Jasmonates: biosynthesis, perception and signal transduction. Essays Biochem. 2020. 23, 501-512.

6. Christensen S.A., Kolomiets M.V. The lipid language of plant-fungal interactions. Fungal Genet Biol. 2011.48(1), 4-14.

7. Gessler N.N., Filippovich S.Y., Bachurina G.P., Kharchenko E.A., Groza N.V., Belozerskaya T.A. Oxylipins and oxylipin synthesis pathways in fungi. Applied Biochemistry and Microbiology. 2017. 53, 628-639.

8. Bouarab K., Adas F., Gaquerel E., Kloareg B., Salaün J.P., Potin P. The Innate Immunity of a Marine Red Alga Involves Oxylipins from Both the Eicosanoid and Octadecanoid Pathways. Plant Physiol. 2004.135(3), 1838-48.

9. Meyer N., Rettner J., Werner M., Werz O., Pohnert G. Algal Oxylipins Mediate the Resistance of Diatoms against Algicidal Bacteria. Mar Drugs. 2018.16(12), 486.

10. Feussner I., Wasternack C. The Lipoxygenase pathway. Annual Review of Plant Biology. 2002. 53, 275-297.

11. Gorina S.S., Toporkova Y.Y., Mukhtarova L.S., Chechetkin I.R., Khairutdinov B.I., Gogolev Y.V., Grechkin A.N. Detection and molecular cloning of CYP74Q1 gene: identification of Ranunculus acris leaf divinyl ether synthase. Biochim Biophys Acta. 2014 1841(9), 1227-33.

12. Gorina S.S., Toporkova Y.Y., Mukhtarova L.S., Smirnova E.O., Chechetkin I.R., Khairutdinov B.I., Gogolev Y.V., Grechkin A.N. Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: Molecular cloning and identification of divinyl ether synthases CYP74M1 and CYP74M3. Biochim Biophys Acta. 2016. 1861(4), 301-309.

13. Toporkova Y.Y., Fatykhova V.S., Gorina S.S., Mukhtarova L.S., Grechkin A.N. Epoxyalcohol Synthase RjEAS (CYP74A88) from the Japanese Buttercup (Ranunculus japonicus): Cloning and Characterization of Catalytic Properties. Biochemistry (Mosc). 2019.84(2), 171-180.

14. Toporkova Y.Y., Smirnova E.O., Gorina S.S., Mukhtarova L.S., Grechkin A.N. Detection of the first higher plant epoxyalcohol synthase: Molecular cloning and characterisation of the CYP74M2 enzyme of spikemoss Selaginella moellendorffii. Phytochemistry. 2018. 156, 73-82.

15. Toporkova Y.Y., Gorina S.S., Bessolitsyna E.K., Smirnova E.O., Fatykhova V.S., Brühlmann F., Ilyina T.M., Mukhtarova L.S., Grechkin A.N. Double function hydroperoxide lyases / epoxyalcohol synthases (CYP74C) of higher plants: identification and conversion into allene oxide synthases by site-directed mutagenesis. Biochim Biophys Acta. 2018. 1863(4), 369-378.

16. Toporkova Y.Y., Ermilova V.S., Gorina S.S., Mukhtarova L.S., Osipova E.V., Gogolev Y.V., Grechkin A.N. Structure- function relationship in the CYP74 family: conversion of divinyl ether synthases into allene oxide synthases by site-directed mutagenesis. FEBS Lett. 2013 587(16), 2552-2558.

17. Brash A.R. Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry. 2009. 70, 1522-1531.

18. Boeglin W.E., Brash A.R. Cytochrome P450-type Hydroxylation and Epoxidation in a Tyrosine-liganded Hemoprotein, Catalase-related Allene Oxide Synthase J Biol Chem, 2012. 287, 24139-24147.

19. Oliw E.H., Hamberg M. An allene oxide and 12-oxophytodienoic acid are key intermediates in jasmonic acid biosynthesis by Fusarium oxysporum J Lipid Res. 2017. 58(8), 1670-1680.


Рецензия

Для цитирования:


Горина С.С., Мухтарова Л.Ш., Топоркова Я.Ю., Гречкин А.Н. ФЕРМЕНТЫ БИОСИНТЕЗА ОКСИЛИПИНОВ: ПОЛУЧЕНИЕ И БИОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА. Актуальная биотехнология. 2021;(1):285-286. https://doi.org/10.20914/2304-4691-2021-1-285-286

Просмотров: 32


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)