ИНЖЕНЕРНЫЕ АСПЕКТЫ СИНТЕЗА БАКТЕРИАЛЬНОЙ НАНОЦЕЛЛЮЛОЗЫ
https://doi.org/10.20914/2304-4691-2021-1-282-284
Об авторах
В. В. БудаеваРоссия
И. Н. Павлов
Россия
А. Е. Ситникова
Россия
Список литературы
1. Urbina L., Corcuera M.Á. et al. A review of bacterial cellulose: sustainable production from agricultural waste and applications in various fields // Cellulose. 2021. P. 1-25. https://doi.org/10.1007/s10570-021-04020-4.
2. Klemm D., Petzold-Welcke K. et al. Biotech nanocellulose: A review on progress in product design and today’s state of technical and medical applications // Carbohyd Polym. 2021. 254. Р. 117313. https://doi.org/10.1016/j.carbpol.2020.117313
3. Zhong C. Industrial-Scale Production and Applications of Bacterial Cellulose // Front. Bioeng. Biotechnol. 2020. 8. Р. 605374. doi: 10.3389/fbioe.2020.605374.
4. Klemm, D., Cranston, E.D. et al. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state // Mater. Today. 2018. 21, Р. 720-748. doi: 10.1016/j.mattod.2018.02.001.
5. Bacterial NanoCellulose from biotechnology to bio-economy / Edited by Gama M. et al. Elsevier. 2016. 240 p.
6. Anton-Sales I., Roig-Sanchez S. et al. In vivo soft tissue reinforcement with bacterial nanocellulose // Biomater. Sci. 2021. 9. Р. 3040-3050. doi: 10.1039/d1bm00025j.
7. Gorgieva S. Bacterial cellulose as a versatile platform for research and development of biomedical materials // Processes 2020. 8. Р. 624. doi: 10.3390/pr8050624.
8. Portela, R., Leal, C.R. et al. Bacterial cellulose: a versatile biopolymer for wound dressing applications // Microb. Biotechnol. 2019. 12. Р. 586-610. doi: 10.1111/1751-7915.13392.
9. Khripunov A.K., Tkachenko A.A. et al. Formation of a composite from se0 nanoparticles stabilized with polyvinylpyrrolidone and Acetobacter xylinum cellulose gel films // Russian Journal of Applied Chemistry. 2007. Т. 80. № 9. С. 1549-1557.
10. Volova, T.G., Shumilova, A.A. et al. Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics // Polym. Test. 2018. 65, Р. 54-68. https://doi.org/10.1016/j.polymertesting.2017.10.023.
11. Gromovykh, T.I., Pigaleva, M.A. et al. Structural organization of bacterial cellulose: The origin of anisotropy and layered structures // Carbohyd Polym. 2020. 237. Р. 116140. https://doi.org/10.1016/j.carbpol.2020.116140.
12. Revin V., Liyaskina E. et al. Cost-effective production of bacterial cellulose using acidic food industry by-products // Braz J Microbiol. 2018. 49. Р. 151-159. https://doi.org/10.1016/J.BJM.2017.12.012
13. Stepanov N., Efremenko E. «Deceived» concentrated immobilized cells as biocatalyst for intensive bacterial cellulose production from various sources // Catalysts. 2018. Vol. 8, № 1. P. 33. https://doi.org/10.3390/catal8010033.
14. Sakovich G.V., Skiba E.A. et al. Technological Fundamentals of Bacterial Nanocellulose Production from Zero Prime-Cost Feedstock // Doklady Biochemistry and Biophysics. 2017. Vol. 477. Р. 357-359. DOI: 10.1134/S1607672917060047.
15. Aleshina L.A. et al. X-ray Diffraction Study of Bacterial Nanocellulose Produced by the Medusomyces Gisevii Sa 12 Culture in Enzymatic Hydrolysates of Oat Hulls // Crystallography Reports. 2018. Vol. 63, No. 6. Р. 955-960.
16. Aleshina L.A., Gladysheva E.K. et al. X-ray Diffraction Study of Bacterial Nanocellulose Produced by Medusomyces Gisevii Sa 12 Cultured in Enzymatic Hydrolysates of Miscanthus // Crystallography Reports. 2019. Vol. 64, No. 6. Р. 914-919. doi: 10.1134/S1063774519060026.
17. Sakovich G.V., Skiba Е.А. et al. Miscanthus is the feedstock for bacterial nanocellulose production // Doklady Chemistry. 2020. Vol. 495, Part 2. Р. 205-208. DOI: 10.1134/S0012500820120034.
18. Kashcheyeva E.I., Gismatulina Y.A. et al. Pretreatments of Non-Woody Cellulosic Feedstocks for Bacterial Cellulose Synthesis // Polymers. 2019. 11(10). Р. 1645. doi:10.3390/polym11101645.
19. Sakovich G.V., Skiba E.A. et al. Technological Fundamentals of Bacterial Nanocellulose Production from Zero Prime-Cost Feedstock // Doklady Biochemistry and Biophysics. 2017. Vol. 477. Р. 357-359. DOI: 10.1134/S1607672917060047.
20. Skiba E.A.. et al. Self-standardization of quality of bacterial cellulose produced by Medusomyces gisevii in nutrient media derived from Miscanthus biomass // Carbohyd Polym. 2021. 252. Р. 117178. https://doi.org/10.1016/j.carbpol.2020.117178.
21. Gladysheva Е.K., Skiba E.A. et al. Study of the Conditions for the Biosynthesis of Bacterial Cellulose by the Producer Medusomyces gisevii Sa 12 // Applied Biochemistry and Microbiology. 2018. Vol. 54, No. 2. Р. 179-187. DOI: 10.1134/S0003683818020035.
22. Skiba E.A., Budaeva V.V. et al. A technology for pilot production of bacterial cellulose from oat hulls // Chem Eng J. 2021. 383. Р. 123128. https://doi.org/10.1016/j.cej.2019.123128.
23. Gismatulina Yu. A., Gladysheva E.K. et al. Synthesis of bacterial cellulose nitrates // Russ. Chem. Bull. 2019. 68 Р. 2130-2133. doi:10.1007/s11172-019-2678x.
24. Budaeva V.V., Gismatulina Y.A. et al. Bacterial Nanocellulose Nitrates. Nanomaterials. 2019. 9. Р. 1694. doi:10.3390/nano9121694.
25. Shavyrkina N.A., Budaeva V.V. et al. Scale-up of biosynthesis process of bacterial nanocellulose // Polymers 2021. 13(12). Р. 1920. https://doi.org/10.3390/polym13121920.
26. Skiba E.A., Shavyrkina N.A. et al. Biosynthesis of Bacterial Cellulose by Extended Cultivation with Multiple Removal of BC Pellicles // Polymers. 2021. 13. Р. 2118. https://doi.org/10.3390/polym13132118
Рецензия
Для цитирования:
Будаева В.В., Павлов И.Н., Ситникова А.Е. ИНЖЕНЕРНЫЕ АСПЕКТЫ СИНТЕЗА БАКТЕРИАЛЬНОЙ НАНОЦЕЛЛЮЛОЗЫ. Актуальная биотехнология. 2021;(1):282-284. https://doi.org/10.20914/2304-4691-2021-1-282-284