Preview

Актуальная биотехнология

Расширенный поиск

РОЛЬ НАКОПЛЕНИЯ ПРОЛИНА И МАЛОНОВОГО ДИАЛЬДЕГИДА В ОТВЕТ НА ТОКСИЧЕСКОЕ ДЕЙСТВИЕ ZNO-НАНО У HORDEUM SATIVUM DISTICHUM

https://doi.org/10.20914/2304-4691-2021-1-201-203

Об авторах

М. С. Волошина
Южный федеральный университет
Россия


Е. М. Вечканов
Южный федеральный университет
Россия


Т. М. Минкина
Южный федеральный университет
Россия


А. А. Плотников
Южный федеральный университет
Россия


С. С. Манджиева
Южный федеральный университет
Россия


Список литературы

1. Apel, K., Hirt, H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann. Rev. Plant Biol. 55, 373-399.

2. Asada, K., 1992. Ascorbate peroxidase - a hydrogen peroxide scavenging enzyme in plants. Physiol. Plant 85, 235-241.

3. Ashraf, M., Fooland, M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206-216.

4. Bandurska, H., 1993. In vitro and in vivo effect of proline on nitrate reductase activity under osmotic stress in barley. Acta Physiol. Plant 15, 83-88.

5. Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39, 205-207.

6. Bohnert, H.J., Jensen, R.G., 1996. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 14, 89-97.

7. Bowler, C.M., Van Montagu, M., Inze, D., 1992. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43, 83-116.

8. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254.

9. Brait JF (2002) Metal ion activated oxidative stress and its control. In: Inze D, Montagu MV (eds) Oxidative stress in plants. Taylor and Francis, New York, pp 171-189

10. Broadley M.R., White P.J., Hammond J.P., I. Zelko, A. Lux, Zinc in plants, New Phytol., 173 (2007) 677-702

11. Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inze, D., Van Breusegem, F., 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57, 779-795.

12. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A., 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93-101.

13. Ehsanpour, A.A., Fatahian, N., 2003. Effects of salt and proline on Medicago sativa callus. Plant Cell Tissue Organ Cult. 73, 53-56.

14. Garcia-Gomez C., et al., Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions, Sci. Total Environ., 589 (2017) 11-24.

15. Hansch R, Mendel R.R., Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl), Curr. Opin. Plant Biol., 12 (2009) 259-266.

16. Hideg, E., 1997. Free radical production in photosynthesis under stress conditions. In: Pessarakli, M. (Ed.), Handbook of Photosynthesis. Marcel Decker, New York, pp. 911-930.

17. Latef A., Abu Alhmad M.F., Abdelfattah K.E., The Possible Roles of Priming with ZnO Nanoparticles in Mitigation of Salinity Stress in Lupine (Lupinus termis) Plants, J. Plant Growth Regul., 36 (2017) 60-70.

18. Lin, J.N., Kao, C.H., 1998. Effect of oxidative stress caused by hydrogen peroxide on senescence of rice leaves. Bot. Bull. Acad. Sin. 39, 161-165.

19. Loreto, F., Velikova, V., 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127, 1781-1787.

20. Matysik, J., Bhalu, A.B., Mohanty, P., 2002. Molecular mechanism of quenching of reactive oxygen species by proline under water stress in plants. Curr. Sci. 82, 525-532.

21. Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., Therios, I., 2006. Boroninduced oxidative damage, antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ. Exp. Bot. 56, 54-62.

22. Palmer C.M., Guerinot M.L., Facing the challenges of Cu, Fe and Zn homeostasis in plants, Nat. Chem. Biol., 5 (2009) 333-340.

23. Piccinno F., Gottschalk F., Seeger S., Nowack B., Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, J. Nanopart. Res., 14 (2012) 1-11.

24. Rhodes, D., Hanson, A.D., 1993. Quaternary ammonium and tertiary sulfonium compounds inhigher-plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44,357-384.

25. Serraj, R., Sinclair, T.R., 2002. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ. 25, 333-341.

26. Sharp, R.E., Hsiao, T.C., Silk, W.K., 1990. Growth of maize primary root at low water potential’s. Plant Physiol. 93, 1337-1346.

27. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med 18:321-336

28. Subbaiah L.V., Prasad T., Krishna T.G., Sudhakar P., Reddy B.R., Pradeep T., Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (Zea mays L.), J. Agric. Food Chem., 64 (2016) 3778-3788.

29. Woodward, A.J., Bennett, Ian. J., 2005. The effect of salt stress and abscisic on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis. Plant Cell Tissue Organ Cult. 82, 189-200.

30. Wu, J.T., 1998. Role of proline accumulation in response to toxic copper in chlorella sp. (chlorophyceae) cells. J. Phycol. 34, 113-117.

31. Zhu, Z., Wei, G., Li, J., Qian, Q., Yu, J., 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt stressed cucumber (Cucumis sativus L.). Plant Sci. 167, 527-533.

32. Слепцов И.В., Журавская А.Н. Динамика накопления флавоноидов в листьях Amaranthus retroflexus, Agastache rugosa и Thlaspi arvense, собранных в Центральной Якутии // Химия растительного сырья. - 2016. - №. 3. - С. 67-72.


Рецензия

Для цитирования:


Волошина М.С., Вечканов Е.М., Минкина Т.М., Плотников А.А., Манджиева С.С. РОЛЬ НАКОПЛЕНИЯ ПРОЛИНА И МАЛОНОВОГО ДИАЛЬДЕГИДА В ОТВЕТ НА ТОКСИЧЕСКОЕ ДЕЙСТВИЕ ZNO-НАНО У HORDEUM SATIVUM DISTICHUM. Актуальная биотехнология. 2021;(1):201-203. https://doi.org/10.20914/2304-4691-2021-1-201-203

Просмотров: 31


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)