ПОЛУЧЕНИЕ НАНОРАЗМЕРНЫХ СИСТЕМ ДЛЯ СО-ДОСТАВКИ ПАКЛИТАКСЕЛА И ПРОИЗВОДНОГО ЭТОПОЗИДА НА ОСНОВЕ АЛЬБУМИНА И СОПОЛИМЕРОВ МОЛОЧНОЙ И ГЛИКОЛЕВОЙ КИСЛОТ И СРАВНИТЕЛЬНАЯ ОЦЕНКА ИХ ЦИТОТОКСИЧЕСКОЙ АКТИВНОСТИ НА ЛИНИИ КЛЕТОК МЫШИНОЙ ГЛИОМЫ GL261
https://doi.org/10.20914/2304-4691-2021-1-141-145
Об авторах
Т. С. КовшоваРоссия
С. А. Бойко
Россия
Ю. А. Малиновская
Россия
М. А. Меркулова
Россия
С. Э. Гельперина
Россия
Список литературы
1. Sung H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries // A Cancer Journal of Clinicians. 2021; 71(3): 209-249.
2. Zeinali M. et al. Nanovehicles for co-delivery of anticancer agents //Drug Discovery Today. -2020.
3. Pan J. et al. Polymeric co-delivery systems in cancer treatment: An overview on component drugs' dosage ratio effect //Molecules. 2019; 24(6):1035.
4. Afsharzadeh M. et al. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment //Artificial cells, nanomedicine, and biotechnology. 2018; 46(6.): 1095-1110.
5. Maleki H. et al. Effect of Paclitaxel/etoposide co-loaded polymeric nanoparticles on tumor size and survival rate in a rat model of glioblastoma //International journal of pharmaceutics. 2021; 604:120722.
6. Wang B. et al. Paclitaxel and etoposide co-loaded polymeric nanoparticles for the effective combination therapy against human osteosarcoma //Journal of nanobiotechnology. 2015; 13(1):1-11.
7. Duan R. et al. Polymer-lipid hybrid nanoparticles-based paclitaxel and etoposide combinations for the synergistic anticancer efficacy in osteosarcoma //Colloids and surfaces b: biointerfaces. 2017; 159: 880-887.
8. Huang T. et al. Synergistic increase in the sensitivity of osteosarcoma cells to thermochemotherapy with combination of paclitaxel and etoposide //Molecular medicine reports. 2012; 6(5):1013-1017.
9. Weaver B.A. How Taxol/paclitaxel kills cancer cells // Mol Biol Cell. 2014; 25(18): P.2677-2681.
10. Montecucco A. et al. Molecular mechanisms of etoposide // EXCLI Journal. 2015; (14): 95-108.
11. Xu Y. et al. The synergic antitumor effects of paclitaxel and temozolomide co-loaded in mPEG-PLGA nanoparticles on glioblastoma cells // Oncotarget. 2016; 7(15): 20890.
12. Luiz M.T. et al. Highlights in targeted nanoparticles as a delivery strategy for glioma treatment //International Journal of Pharmaceutics. 2021; 120758.
13. Ohnuma T. et al. Preparation and Antitumor Activity of 2" -O-, 3" -O-and 2", 3" -Di-O-substituted Derivatives of Etoposide //Chemical and pharmaceutical bulletin. 1992; 40(7): 1783-1788.
14. Neil I. Nab technology: a drug delivery platform utilizing endothelial gp60 receptor-based transport and tumor-derived SPARC for targeting //Drug Deliv. Rep. 2007; 37-41.
15. Kumskova N. et al. How subtle differences in polymer molecular weight affect doxorubicin-loaded PLGA nanoparticles degradation and drug release //Journal of microencapsulation. 2020; 37(3): 283-295.
16. Leu Y.L. et al. Benzyl ether-linked glucuronide derivative of 10-hydroxycamptothecin designed for selective camptothecin- based anticancer therapy //Journal of medicinal chemistry. 2008; 51(6): 1740-1746.
17. Maleki H. et al. Preparation of Paclitaxel and Etoposide Co-loaded mPEG-PLGA Nanoparticles: an Investigation with Artificial Neural Network //Journal of Pharmaceutical Innovation. 2019; 1-15.
Рецензия
Для цитирования:
Ковшова Т.С., Бойко С.А., Малиновская Ю.А., Меркулова М.А., Гельперина С.Э. ПОЛУЧЕНИЕ НАНОРАЗМЕРНЫХ СИСТЕМ ДЛЯ СО-ДОСТАВКИ ПАКЛИТАКСЕЛА И ПРОИЗВОДНОГО ЭТОПОЗИДА НА ОСНОВЕ АЛЬБУМИНА И СОПОЛИМЕРОВ МОЛОЧНОЙ И ГЛИКОЛЕВОЙ КИСЛОТ И СРАВНИТЕЛЬНАЯ ОЦЕНКА ИХ ЦИТОТОКСИЧЕСКОЙ АКТИВНОСТИ НА ЛИНИИ КЛЕТОК МЫШИНОЙ ГЛИОМЫ GL261. Актуальная биотехнология. 2021;(1):141-145. https://doi.org/10.20914/2304-4691-2021-1-141-145