Preview

Topical biotechnology

Advanced search

СУБСТРАТНОЕ СТИМУЛИРОВАНИЕ PAL, КАК ПОДХОД К ПОЛУЧЕНИЮ ВЫСОКОЛИГНИФИЦИРОВАННОГО СЫРЬЯ ИЗ РАСТЕНИЙ ПШЕНИЦЫ (TRÍTICUM AESTÍVUM L.)

https://doi.org/10.20914/2304-4691-2021-1-101-104

About the Authors

П. Федураев
Балтийский федеральный университет им. И. Кантар
Russian Federation


А. Рябова
Балтийский федеральный университет им. И. Кантар
Russian Federation


А. Пунгин
Балтийский федеральный университет им. И. Кантар
Russian Federation


Э. Токупова
Балтийский федеральный университет им. И. Кантар
Russian Federation


Л. Скрыпник
Балтийский федеральный университет им. И. Кантар
Russian Federation


References

1. Sattler S., Funnell-Harris D. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens? //Frontiers in Plant Science. - 2013. - Vol. 4. - P. 70.

2. Kong J.Q. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering //RSC advances. - 2015. - Vol. 5. - №. 77. - P. 62587-62603.

3. Feduraev P. Skrypnik L., Riabova A., Pungin A., Tokupova E., Maslennikov P., Chupakhina G. Phenylalanine and tyrosine as exogenous precursors of wheat (triticum aestivum L.) secondary metabolism through PAL-associated pathways //Plants. - 2020. - Vol. 9. - №. 4. - P. 476.

4. Maeda H.A. Lignin biosynthesis: Tyrosine shortcut in grasses //Nature plants. - 2016. - Vol. 2. - №. 6. - P. 1-2.

5. Barros J., Serrani-Yarce J.C., Chen F., Baxter D., Venables B.J., Dixon R.A. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis //Nature Plants. - 2016. - Vol. 2. - №. 6. - P. 1-9.

6. Cheng G.W., Breen P.J. Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit //Journal of the American Society for Horticultural Science. - 1991. - Vol. 116. - №. 5. - P. 865-869.

7. Rosler J., Krekel F., Amrhein N., Schmid, J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity //Plant physiology. - 1997. - Vol. 113. - №. 1. - P. 175-179.

8. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding //Analytical biochemistry. - 1976. - Vol. 72. - №. 1-2. - P. 248-254.

9. Moreira-Vilar F.C., Siqueira-Soares R.D.C., Finger-Teixeira A., Oliveira D.M.D., Ferro A.P., da Rocha, G.J., Ferrarese-Filho O. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods //PloS one. - 2014. - Vol. 9. - №. 10

10. Barnes W.J., Anderson C.T. Acetyl bromide soluble lignin (ABSL) assay for total lignin quantification from plant biomass //Bio Protoc. - 2017. - Vol. 7. - №. 2149

11. Lozovaya V.V., Lygin A.V., Zernova O.V., Ulanov A.V., Li S., Hartman G.L., Widholm J.M. Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase //Planta. - 2007. - Т. 225. - №. 3. - С. 665-679.

12. Fraser C.M., Chapple C. The phenylpropanoid pathway in Arabidopsis //The Arabidopsis Book/American Society of Plant Biologists. - 2011. - Vol. 9.


Review

For citations:


 ,  ,  ,  ,   . Topical biotechnology. 2021;(1):101-104. (In Russ.) https://doi.org/10.20914/2304-4691-2021-1-101-104

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-4691 (Print)