УДК 637.1

https://doi.org/10.20914/2304-4691-2024-3-27

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА И СУБСТРАТНАЯ СПЕЦИФИЧНОСТЬ РЕКОМБИНАНТНОЙ МУТАНАЗЫ, РАСЩЕПЛЯЮЩЕЙ А-1,3-D-ГЛЮКАН И РАЗРУШАЮЩЕЙ БАКТЕРИАЛЬНЫЕ БИОПЛЁНКИ, ИЗ TRICHODERMA HARZIANUM, ЭКСПРЕССИРОВАННОЙ В PENICILLIUM VERRUCULOSUM

О.А. Синицына¹, П.В. Волков², И.Н. Зоров^{1,2}, А.М. Рожкова², Б.С. Комарова³, Н.С, Новикова³, Н.Е. Нифантьев³, А.П. Синицын^{1,2}

 1 МГУ имени М.В. Ломоносова, Москва, Россия 2 ФИЦ Биотехнологии РАН, Москва, Россия 3 ИОХ им. Н.Д. Зелинского РАН

Ген mutAW, кодирующий мутаназу A гриба *Trichoderma harzianum* (MutA, семейство GH71, α -1,3-глюканаза, EC 3.2.1.59), был клонирован и гетерологично экспрессирован высокопродуктивным грибом *Penicillium verruculosum*. Для штамма *P. verruculosum* MutA были получены неочищенные ферментные препараты с содержанием рекомбинантной MytA 40 % от общего секретируемого белка. МутA, выделенная в гомогенном состоянии, имела молекулярную массу 67 кДа и проявляла максимальную активность по отношению к мутану (α -1,3-глюкану) при рН 5,0 и 50 °C. При температуре 40–50 °C МутA была стабильна в течение по меньшей мере 3 ч. K_m и k_{cat} составляли 1,0 г/л и 30 с⁻¹, соответственно, при использовании мутана в качестве субстрата. Глюкоза была основным продуктом длительного гидролиза мутана. ВЭЖХ-анализ продуктов гидролиза олиго- α -(1/3)-D-глюкозидов, содержащих в качестве агликона определяемый УФ-излучением остаток N-трансциннамоила, показал, что МутA характеризуется эндопроцессивным гидролитическим действием. Было продемонстрировано, что МутA разрушает бактериальные биоплёнки как грамположительных, так и грамотрицательных бактерий за счёт разрушения входящих в состав их полисахаридной матрицы мутана.