№1, 2024

УДК 66.047

https://doi.org/10.20914/2304-4691-2024-1-10

КЕФИРНЫЙ ПРОДУКТ С КОНЦЕНТРАТОМ МИЦЕЛЛЯРНОГО КАЗЕИНА

Е.И. Мельникова, Е.В. Богданова, Ю.П. Кулумбегова, Я.А. Дорохова

Воронежский государственный университет инженерных технологий Воронеж, Россия

Обогащенные кисломолочные напитки представляют собой сегмент, в котором ожидается быстрорастущий спрос на мицеллярный казеин [1]. Наиболее полезным среди таких напитков является кефир. Инновации во вкусовых характеристиках и универсальных формах таких продуктов повышают привлекательность рынка для более широкой потребительской базы, а интерес производителей к чистым этикеткам и натуральным ингредиентам подталкивает сосредоточиться на минимальной обработке сырья и поставках с экологически чистых молочных ферм.

В этой связи было предложено применение концентрата мицеллярного казеина (КМК) в технологии кефира. Экспериментальные исследования проводили на базе кафедры технологии продуктов питания животного происхождения ФГБОУ ВО Воронежский государственный университет инженерных технологий и Центра прикладных исследований ПАО МК «Воронежский». В качестве основного компонента нормализованной смеси применяли концентрат мицеллярного казеина, физикохимические показатели которого приведены в таблице.

Показатель	Обезжиренное молоко	КМК
	1	
Массовая доля сухих веществ, %	9,92	13,41
Массовая доля жира, %	0,08	< 0,02
Массовая доля общего белка, %, в т. ч.:	3,55	9,38
сывороточных белков	0,69	0,78
казеина	2,67	8,62
Соотношение казеин: сывороточные белки	75:25	92:8
Титруемая кислотность, ^о Т	16	23

Таблица – Характеристика сырья для производства кефира

Пастеризованное обезжиренное молоко подвергали микрофильтрации с применением полупроницаемых полимерных мембран с диаметром пор 0,1 мкм при t=10–15 °C и давлении 0,2–0,3 МПа до массовой доли сухих веществ в концентрате 12–16 %; далее проводили последовательно две ступени диафильтрации полученного концентрата двойным объемом обратноосмотической воды по отношению к объему концентрата на каждой ступени диафильтрации при режимах работы мембранной установки, аналогичных процессу микрофильтрации, до получения концентрата объемом, равным объему первоначально отправленного на диафильтрацию концентрата. Полученный концентрат подвергали пастеризации при $t=85\pm2$ °C с выдержкой 5–10 мин, охлаждали до t=20–25 °C; вносили производственную закваску, приготовленную на кефирных грибках, в количестве 3–5 % от массы заквашиваемой смеси перемешивали 15–20 мин, сквашивали при t=20–25 °C до титруемой кислотности 85–100 °T; перемешивали и охлаждали до $t=14\pm2$ °C в течение 3–6 ч, далее подвергали созреванию при t=8–10 °C не менее t=12 ч.

Применение концентрата мицеллярного казеина в качестве сырья для производства кефира позволяет получить продукт с высокой биологической ценностью и содержанием незаменимых аминокислот, а также низкими массовыми долями жира, лактозы для диетического, спортивного и специализированного питания; интенсифицировать процесс производства кефира за счет применения мембранных технологий и получения сырья с заданными физико-химическими характеристиками.

Литература

1. Ионова, И.И. Перспективные ресурсосберегающие технологии минорных белковых компонентов из молочной сыворотки / И.И. Ионова, А.О. Юрасов, Н.А. Тихомирова // Переработка молока. – 2022. – № 7 (273). – С. 32–34.