УДК 579.61

ОПРЕДЕЛЕНИЕ АНТИМИКРОБНОЙ АКТИВНОСТИ ГИДРОЗОЛЯ ГИДРОКСИДА ГАДОЛИНИЯ ЭКСПРЕСС-МЕТОДОМ, ОСНОВАННЫМ НА СОДЕРЖАНИИ РАСТВОРЕННОГО КИСЛОРОДА В СРЕДЕ

В.С. Макулова, Л.О. Шадская, И.А. Буторова, И.А. Белова, А.С. Гродский

ФГБОУ ВО «Российский химико-технологический университет имени Д.И. Менделеева», Москва, Россия

В последнее время растет устойчивость микроорганизмов к известным антимикробным препаратам, а также расширяется спектр устойчивых видов, поэтому возникает потребность в разработке новых биоцидных веществ, а также методов оценки их антимикробной активности. Большой интерес представляют экспресс-методы, так как они позволяют быстро провести оценку и отбросить неудачные варианты. Известно, что наночастицы многих металлов и их соединений, в том числе редкоземельных элементов, обладают антимикробными свойствами, зачастую отсутствующими в их макроразмерной форме. Одними из наиболее перспективных для применения в медицинских целях среди соединений редкоземельных элементов являются соединения гадолиния. В связи с этим целью данной работы являлась разработка экспресс-метода определения антимикробной активности веществ на основе содержания растворенного кислорода в среде и определение антимикробной активности гидрозоля гидроксида гадолиния данным методом. Синтез и основные коллоидно-химические характеристики гидрозоля гидроксида гадолиния описаны в работе [1].

Для разработки экспресс-метода использовался многопараметровый настольный анализатор HI2020 edge (Hanna Instruments) с подключенным датчиком растворенного кислорода III 764080, который представляет собой ультратонкий полярографический электрод с ячейкой Кларка, разработанный для измерения растворенного кислорода в водных растворах.

В качестве тест-микроорганизмов при разработке метода были выбраны следующие штаммы: Micrococcus luteus BKПМ-B-7845, Saccharomyces cerevisiae BKПМ-Y-752, Pseudomonas fluorescens BKПМ-B-6735, Aspergillus niger BKПМ-F-1057, Ochrobactrum ciceri BCБ-947 и Rhodococcus erythropolis BCБ-388. На первом этапе были проведены исследования для определения условий подготовки культуры тест-микроорганизмов. С этой целью варьировали плотность посевного материала, приготовленного по шкале МакФарланда, и время предварительного культивирования. В качестве примера на рисунке 1 представлены кривые кинетики потребления растворенного кислорода в среде при добавлении 1 мл инокулята М. luteus и S. cerevisiae с плотностью 0,5, 5 и 10 по МакФарланду к 100 мл жидкой питательной среды.

На рисунке 2 представлены кривые при варьировании времени предварительного культивирования от 3 до 24 часов для различных культур при плотности инокулята 5 по стандарту МакФарланда.

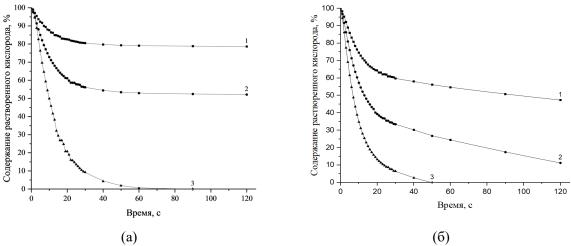


Рисунок 1. Кинетика потребления кислорода М. luteus при времени предварительного культивирования 5 часов (а) и S. cerevisiae (б) при времени предварительного культивирования 24 часа, плотность инокулята соответствует: 1-0.5 по МакФарланду, 2-5 по МакФарланду 3-10 по МакФарланду

№2. 2023

Исходя из анализа совокупности полученных данных были определены условия подготовки тесткультур: плотность посевного материала - 5 по Мак Φ арланду, время предварительного культивирования - 3-5 часов для бактерий, 24 часа для грибковых и дрожжевых культур.

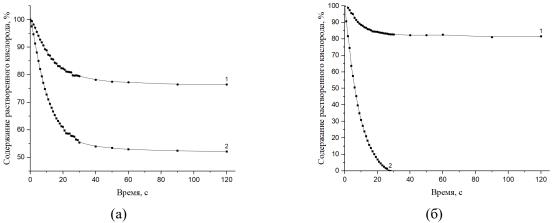


Рисунок 2. Кинетика потребления кислорода M. luteus (a) и A. niger (б) при плотности посевного материала, соответствующего стандарту 5 по МакФарланду, время предварительного культивирования: 1-3 ч, 2-5 ч для M. luteus и 24 ч для A. niger.

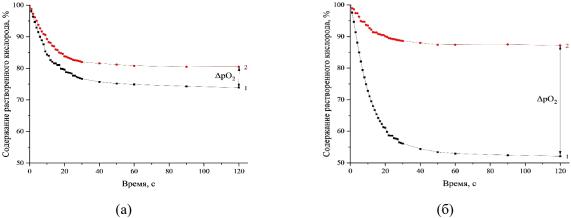


Рисунок 3. Кинетика потребления кислорода Р. fluorescens (a) и М. luteus (б) при времени культивирования 5 ч и плотности инокулята 5 по стандарту МакФарланда: 1 – контрольный образец, 2 – опытный образец с добавлением ПАВ.

Возможность использования прибора для оценки антимикробной активности проверяли при добавлении в среду ПАВ с установленной активностью против широкого спектра микроорганизмов — тетрабутиламмония бромистого с концентрацией $0.5\,$ масс %. В качестве критерия оценки антимикробной активности в отношении каждой исследуемой культуры определяли величину ΔpO_2 , которая представляет собой разницу между содержанием растворенного в среде кислорода в опытном и контрольном образцах за $2\,$ мин. Чем больше данная величина, тем больше антимикробная активность в отношении взятой культуры. На рисунке $3\,$ в качестве примера представлены кривые кинетики потребления кислорода для P. fluorescens и M. luteus. Результаты определения ΔpO_2 для всех выбранных тест-штаммов представлены в таблице 1.

Из полученных данных видно, что данный метод можно использовать для оценки антимикробной активности веществ и принять в качестве экспресс-метода для бактериальных культур.

Для определения антимикробной активности гидрозоля гидроксида гадолиния разработанным экспресс-методом были выбраны следующие микроорганизмы: *Escherichia coli* ATCC 25922, *Staphylococcus aureus* FDA 209P, *Candida albicans* ВКПМ Y-3108 и *Bacillus subtilis* ВКПМ В-13183. В качестве ингибитора жизнедеятельности микроорганизмов в опытные образцы было добавлено 5 мл гидрозоля с концентрацией 52 г./л. Кривые кинетики потребления кислорода представлены на рисунке 4, рассчитанные величины ΔpO_2 – в таблице 2.

Таблица 1 — Величины $\Delta p O_2$, полученные при использовании в качестве ингибитора тетрабутиламмония бромистого

Тест-микроорганизм	fluorescens	luteus	cerevisiae	niger	ciceri	erythropolis
ΔpO_2 , %	6,6	35,1	27,2	3,8	7,6	3,1

Рисунок 4. Кинетика потребления кислорода $E.\ coli\ (a)$, S. aureus (б), B. subtilis (в), C. albicans (г) при времени культивирования 3 часа и плотности инокулята 5 по стандарту МакФарланда: 1- контрольный образец, 2- опытный образец с добавлением гидрозоля гидроксида гадолиния

Таблица 2 — Величины ΔpO_2 , полученные при использовании в качестве ингибитора гидрозоля гидроксида гадолиния

Тест-микроорганизм	coli	aureus	subtilis	albicans
ΔpO_2 , %	6,6	81	64,2	3,5

Как видно из представленных данных, антимикробная активность гидрозоля гидроксида гадолиния, определенная данным экспресс-методом, была обнаружена в отношении всех исследуемых тест-культур и согласуется с ранее полученным результатами определения антимикробной активности золя классическим методом серийных разведений [2].

Литература

- 1. Макулова В.С., Гродский А.С., Белова И.А. Электролитная коагуляция гидрозолей гидроксида гадолиния и ее механизмы // Вестник ВГУ. Серия: Химия. Биология. Фармация. 2022. № 3. С. 20–27.
- 2. Макулова В.С. и др. Антимикробная активность гидрозоля гидроксида гадолиния // Актуальная биотехнология: Материалы X международной научно-практической конференции «Биотехнология: наука и практика». 2022. № 1. С. 102–103. (Алушта, 12–16 сентября 2022 г.)