https://doi.org/10.20914/2304-4691-2023-1-16-18

УДК 579.64

ОТБОР ШТАММОВ BACILLUS SPP. ДЛЯ СОЗДАНИЯ БИОЛОГИЧЕСКОГО ПРЕПАРАТА ДЛЯ ЖИВОТНОВОДСТВА

Д.Е. Дудник, А.Н., Иркитова, А.В. Малкова, Е.Н. Каргашилова

ФГБОУ «Алтайский государственный университет», Барнаул, Россия

Инфекционные заболевания животных являются одной из наиболее значимых проблем сельского хозяйства. Интенсификация животноводства и, как следствие, содержание животных большими группами приводит к созданию благоприятных условий для роста патогенной и условно-патогенной микрофлоры в помещениях, где содержатся животные. Бактериальные инфекции в таких условиях начинают приобретать хронический характер и приводят к значительным экономическим потерям для предприятий [1].

Причиной бактериальных инфекций в большинстве случаев является проникновение патогенной микрофлоры внутрь организма, что приводит к снижению жизненных функции животного. Профилактика бактериальных инфекций включает повышение неспецифической устойчивости поголовья и дезинфекцию помещений, которые могут проводиться с помощью биологических препаратов на основе микроорганизмов [2, 3].

Повышение сопротивляемости организма возможно с помощью применения пробиотических препаратов. Использование пробиотиков не только позволяет снизить количество инфекции, но и ускорить выздоровление и минимизировать последствия антибиотикотерапии [3]. Особенно эффективны данные препараты в отношении профилактики и лечения желудочно-кишечных заболеваний, летальность которых может доходить до 50 % [1, 3].

Профилактическая дезинфекция является неотъемлемой частью санитарно-гигиенических мероприятий в сельском хозяйстве. Для её проведения в основном используются химические средства, которые быстро действуют, эффективны, но и, вместе с тем, высокоопасны для животных, птиц и рабочего персонала [4]. Биологические дезинфектанты на основе бактерий являются более экологичной альтернативой химическим средствам и позволяют снижать численность патогенной и условно-патогенной микрофлоры. Помимо этого, применение биологической дезинфекции положительно сказывается на сохранности молодняка и среднесуточном приросте [5].

Бактерии рода Bacillus активно используются как компонент биологических чистящих средств, что обусловлено множеством свойств, повышающих дезинфицирующую способность средств. Бациллы синтезируют противомикробные соединения и органические кислоты, благодаря чему способны к конкурентному вытеснению и замещению патогенов на обрабатываемых поверхностях. Кроме того, применение дезинфектантов на основе бактерий Bacillus вызывает у патогенной и условно-патогенной микрофлоры потерю генов устойчивости к антибиотикам [6].

Исходя из вышеизложенного необходима разработка биологических препаратов для профилактики бактериальных инфекции сельскохозяйственных животных и птиц. Для этого в свою очередь необходим поиск и отбор штаммов с высоким антагонистическим потенциалом в отношении патогенной и условно-патогенной микрофлоры.

В качестве объектов исследования были использованы штаммы Bacillus spp.из коллекции ИЦ Промбиотех АлтГУ. Все штаммы были выделены из различных экологических ниш: ризосфера растений, естественные водоемы, животноводческие и птицеводческие помещения.

В качестве тест-культур использовали 7 штаммов грамотрицательных бактерий семейства Enterobacteriaceae: Escherichia coli, Serratia marcescens, Shigella spp., Salmonella enterica Pullorum, Citrobacter freundii, Providencia alcalifaciens.

Для культивирования всех микроорганизмов использовали L-бульон следующего состава (г/л): 5 NaCl, 5 дрожжевой экстракт, 15 пептон. Определение антагонизма проводили на плотной L среде аналогичного состава с добавлением микробиологического агара 15 г./л.

Антагонистическую активность оценивали методом перпендикулярных штрихов [7]. Для этого штаммы Bacillus spp и тест-культур для исследования предварительно выращивали в шейкере-инкубаторе на L-бульоне в течение 24 часов при 37 °C и вращении 220 об/мин. На поверхность плотной L среды высевали в виде прямого штриха (основной штрих) исследуемый штамм бацилл

и культивировали в термостате в течение 24 часов при 37 °С. По истечении времени штаммы тест-культур подсевали штрихами перпендикулярно основному штриху и культивировали 24 часа в аналогичных условиях. Результаты оценивали по размеру зоны задержки роста тест-культуры на границе контакта с исследуемым штаммом. Все значения представлены в виде среднее арифметическое \pm стандартное отклонение.

В результате проведенного исследования установлено что из 17 штаммов только 7 обладали антагонистической активностью в отношении тест-культур энтеробактерий (табл. 1).

Исследуемый штамм	E. coli 1	E. coli 2	S. marcescens	Shigella spp	enterica Pullorum	freundii	alcalifaciens			
	Зона подавления роста тест-культуры, мм									
licheniformis 5	-	-	-	-	-	-	-			
licheniformis 6	$12,5\pm3,5$	$4,7\pm0,6$	-	$2,7\pm1,2$	-	-	8,5±0,7			
licheniformis 7	$3,3\pm0,6$	2,3±0,6	$3,3\pm0,6$	2,3±0,6	5,3±0,2	1,0±0,0	1,0±0,0			
licheniformis 8	$2,0\pm0,0$	1,7±0,6	$3,0\pm0,0$	$2,8\pm0,3$	-	-	2,0±0,0			
licheniformis 10	-	-	-	-	-	-	-			
pumilus 4	-	-	-	-	-	-	-			
pumilus 5	-	-	-	-	-	-	-			
pumilus 6	-	-	-	-	-	-	-			
pumilus 7	-	-	-	-	-	-	-			
pumilus 16	-	-	-	-	-	-	-			
firmus 1	-	-	-	-	1	-	-			
firmus 2	-	-	-	-	-	-	-			
firmus 3	$3,3\pm0,6$	-	-	-	1	$2,0\pm0,0$	2,7±0,6			
megaterium	5,7±0,6	-	-	-	$3,0\pm0,0$	-	1,0±0,0			
mojavensis	-	1,0±0,0	-	$3,7\pm0,6$	2,0±0,0	-	-			
toyonensis 15	-	-	-	-	-	-	-			
subtilis group 1	3,3±0,6	$2,7\pm0,6$	4,0±1,0	$3,7\pm0,6$	3,1±0,3	2,0±0,0	1,0±0,0			
Примечание: «—» — антагонизм отсутствует										

Таблица 1. Антагонистическая активность штаммов Bacillus spp. в отношении энтеробактерий

Для двух штаммов (*B. licheniformis* 7 и *B. subtilis* group 1) была отмечена антагонистическая активность в отношении всех грамотрицательных тест-культур. Напротив, штаммы *B. licheniformis* 5, *B. licheniformis* 10, *B. pumilus* 4, *B. pumilus* 5, *B. pumilus* 6, *B. pumilus* 7, *B. pumilus* 16, *B. firmus* 1, *B. firmus* 2 и *B. toyonensis* 15 не влияли на рост энтеробактерий. Для остальных бацилл антагонизм определен только в отношении отдельных штаммов тест-культур.

Причина отсутствия антагонистической активности у 59 % штаммов Bacillus spp может быть связана с тем, что для большинства штаммов бацилл характерна продукция антимикробных соединений, ингибирующих рост только грамположительных микроорганизмов и грибов. Грамотрицательные микроорганизмы зачастую обладают устойчивостью к антимикробным пептидам бактерий рода Bacillus или способны их инактивировать. Однако у некоторых видов бацилл, в том числе у видов В. licheniformis и *B. subtilis*, обнаружены макролактины, липопептиды, бактериоцины и бактериоцинподобные пептиды активные также в отношении грамотрицательных бактерий, в том числе и этеробактерий (субтилозин A, сурфацин, бацилизин) [8].

Для отбора штаммов Bacillus spp с наибольшим антагонистическим потенциалом использовали бальную систему. Степень антагонизма определяли по размеру зоны задержки роста тест-культуры: высокая активность – 11–30 мм, средняя – 4–11 мм, слабая – до 4 мм. Высокую антагонистическую активность оценивали в 3 балла, среднюю – в 2 балла, низкую – в 1 балл (табл. 2).

По результатам бальной оценки максимальные значения зафиксированы для 3 штаммов — *B. licheniformis* 6, *B. licheniformis* 7 и *B. subtilis group* 1. Другие 4 штамма *Bacillus spp* показали более низкие значения по представленной балльной системе.

№1, 2023

Таблица 2. Оценка антагонистической активности штаммов Bacillus spp

	Исследуемый штамм										
Тест-культура	licheniformis 6	licheniformis 7	licheniformis 8	firmus 3	megaterium	mojavensis	subtilis group 1				
	Степень антагонизма										
E. coli 1	Высокая	Низкая	Низкая	Низкая	Средняя	-	Низкая				
E. coli 2	Средняя	Низкая	Низкая	-	-	Низкая	Низкая				
marcescens	-	Низкая	Низкая	-	-	-	Средняя				
Shigella spp	Низкая	Низкая	Низкая	-	-	Низкая	Низкая				
enterica Pullorum	-	Средняя	-	-	Низкая	Низкая	Низкая				
freundii	-	Низкая	-	Низкая	-	-	Низкая				
alcalifaciens	Средняя	Низкая	Низкая	Низкая	Низкая	-	Низкая				
Сумма баллов											
	8	8	5	3	4	3	8				
Примечание: «-» – антагонизм отсутствует											

Таким образом по результатам исследования наибольшая антагонистическая активность была зафиксирована у штаммов *B. licheniformis* 6, *B. licheniformis* 7 и *B. subtilis group* 1. Данные штаммы показали свою эффективность в отношении широкого спектра патогенных и условно-патогенных грамотрицательных бактерий. В связи с чем штаммы *B. licheniformis* 6, *B. licheniformis* 7 и *B. subtilis group* 1 перспективны для включения в состав биологического препарата для животноводства.

Литература

- 1. Сазонова Е.А., Гунько М.В. Распространенность штаммов Е.coli у различных видов животных и птицы // Ветеринария и кормление, 2023. № 3. C. 70–72.
- 2. Пивнева В.В. Перспективы профилактики инфекционных заболеваний животных в современных условиях // Форум молодых ученых, 2019. № 12. С. 724—726.
- 3. Афанасьева Ю.Г., Корбмахер Е.Р., Колодина Е.В., Лиманский В.В., Пушкарев В.А., Функ И.А. Пробиотики альтернатива кормовым антибиотикам // Вестник Алтайского государственного аграрного университета, 2023. № 2 (220). С. 65–72.
- 4. Шилова Е.Н., Вялых И.В., Кадочников Д.М., Субботина О.Г. Эффективность применения новых дезинфицирующих средств в ветеринарии // Аграрный вестник Урала, 2013. № 8 (114). С. 7–12.
- 5. Сверчкова Н.В. Пробиотические препараты на основе бактерий рода Bacillus для животноводства, птицеводства и промышленного рыбоводства Микробные биотехнологии: фундаментальные и прикладные аспекты, 2020. Т. 12. С. 252–264
- 6. De Cesare A., Caselli E., Lucchi A., Sala C., Parisi A., Manfreda G., Mazzacane S. Impact of a probiotic-based cleaning product on the microbiological profile of broiler litters and chicken caeca microbiota // Poultry Science, 2019. V. 98. P. 3602–3610.
- 7. ОФС.1.7.2.0009.15 Определение специфической активности пробиотиков. Общая фармакопейная статья. Государственная фармакопея Российской Федерации. XIV изд. Москва, 2018. Т. 2. 3262 с.
- 8. Abriouel H., Franz C.M., Ben Omar N., Galvez A. Diversity and applications of Bacillus bacteriocins // FEMS Microbiology Reviews, 2011. V. 35. P. 201–232.