№3 (34), 2020

УДК 604.4:631.8

БИОКАТАЛИТИЧЕСКАЯ ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ ВОЗОБНОВЛЯЕМОГО ОРГАНИЧЕСКОГО СЫРЬЯ И ЕГО ОБОГАЩЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫМИ КОМПОНЕНТАМИ ДЛЯ ПРОИЗВОДСТВА ПРОДУКЦИИ СЕЛЬСКОХОЗЯЙСТВЕННОГО НАЗНАЧЕНИЯ

В.П. Молчанов, Н.В. Фомичева, Ю.Ю. Косивцов, М.Г. Сульман

Тверской государственный технический университет, Тверь, Россия

Одним из наиболее эффективных путей интенсификации внедрения биотехнологических и химико-технологических процессов является проведение масштабных физико-химических исследований и выполнение на их основе соответствующих кинетических расчетов. Результаты указанных расчетов позволяют прогнозировать протекание процессов и проводить целенаправленный синтез различных химических соединений в промышленном масштабе. Такой переход от изучения кинетики реакций к их промышленной реализации может быть осуществлен при помощи моделирования. Теория моделирования химических и биотехнологических процессов в значительной мере основывается на законах кинетики. Для выполнения моделирования необходимы подробные и достаточно точные кинетические данные.

В связи с этим, для создания научных основ технологии получения продукции, обогащенной биологически активными веществами, на основе смесей растительных отходов и отходов животноводства проведены физико-химические и кинетические исследования, результаты которых позволяют сделать предположения о механизмах образования сахаров, витаминов и аминокислот, то есть представить последовательность молекулярных трансформаций в процессе биокаталитической конверсии.

Сложность решения этой задачи обусловливается неоднозначностью механизмов биохимических реакций, лежащих в основе исследуемого процесса, которые, как правило, сопровождаются образованием лабильных и реакционноспособных промежуточных соединений. Установление наличия, изучение строения и свойств этих промежуточных соединений, обнаружение корреляций между строением и их реакционной способностью и составляют сущность исследования механизма процесса. В свою очередь, выявление механизма позволяет решить вопросы прогнозирования поведения системы во времени и перейти к задачам оптимизации процесса с целью получения конечного продукта биокаталитической конверсии с максимальным содержанием биологически активных вешеств.

Объектом представляемого исследования является процесс биокаталитической конверсии органических субстратов с дополнительным образованием биологически активных соединений под действием ферментативных систем микроорганизмов, первоначально находящихся в исходном субстрате. В качестве органического субстрата могут быть использованы торф, крупнотоннажные отходы сельскохозяйственных производств и перерабатывающей промышленности (солома, опилки, льняная костра, льняные и хлопковые очесы прядильных фабрик, жмыхи маслоперерабатывающих производств и др.). В качестве добавки к органическим субстратам могут применяться коммунальные отходы, а также химические стимуляторы, концентрация и состав которых могут оказать влияние на интенсивность образования биологически активных компонентов (витаминов, аминокислот, сахаров).

Компостирование навоза с торфом издавна используется для получения органических удобрений. Торф представляет собой экологически чистый природный материал, в котором содержится около 7 % сырого протеина, 6 % клетчатки, 0.7 % жира и микроэлементов, однако питательная ценность непереработанного торфа невысока и составляет менее 0.2 кормовых единиц. Навоз, несмотря на то, что богат различными питательными веществами, в том числе, витаминами и минеральными солями, содержит патогенную микрофлору. Для эффективного использования таких компостов в кормопроизводстве необходимо обогащать их витаминами и микроэлементами и проводить дополнительную обработку (пастеризацию) для устранения влияния патогенной микрофлоры. Обогащение компоста будет осуществляться методом его биоконверсии с микроорганизмами-производителями протеина, аминокислот и других питательных веществ.

Сущность исследованного процесса заключается в создании наиболее благоприятных условий развития отдельных групп микроорганизмов, ферментативные системы которых способны активно деструктировать природные биополимерные комплексы (целлюлозу и, частично, лигнин) до моно-, дии олигосахаридов и трансформировать последние в аминокислоты, олиго- и полипептиды.

Полученный в результате биоконверсии продукт обогащен белками, аминокислотами, липидами, сахарами, витаминами, микроэлементами. Комплекс вышеуказанных веществ при использовании полученного продукта в качестве удобрений будет способствовать значительному повышению плодородных свойств почвы, а при скармливании сельскохозяйственным животным и птице в качестве кормовых добавок — повышению привесов биомассы, надоев и других показателей.

Для выявления ценности конечного продукта, а также с целью оптимизации процесса его получения выполнены комплексные физико-химические исследования состава ферментируемой смеси и содержания в ней различных биологически активных веществ. В ходе проведения указанных исследований использованы современные методы анализа в сочетании с имеющимся в распоряжении коллектива исполнителей комплектом дорогостоящего аналитического оборудования, в состав которого входят система капиллярного электрофореза, хроматографический комплекс для ВЭЖХ-анализа, газовый и жидкостный хроматомасс-спектрометры, анализатор дзета-потенциала, автоматический анализатор поверхности образцов и другие эффективные исследовательские приборы.

По результатам проведенных комплексных исследований процесса биоконверсии группой ученых Тверского государственного технического университета и Всероссийского мелиорированных земель (г. Тверь) разработана технология переработки отходов животноводства и птицеводства с влагопоглощающим материалом посредством аэробной твердофазной ферментации в высокоэффективную, экологически чистую продукцию – компост многоцелевого назначения (КМН). Его производство осуществляется в ферментере камерного типа, представляющего собой сооружение размером 5×10 м и высотой до 4.5 м, в полу которого вмонтированы перфорированные трубы, тупиковые с одного конца и объединенные с другого общим воздуховодом. Стандартной установкой по производству КМН является двухкамерный ферментер, но в зависимости от объемов производства биоудобрения на практике могут использоваться батареи из любого числа ферментеров. При соблюдении основных технологических параметров (влажности органической смеси 50–70 %, рН 6–8, соотношения углерода к азоту 20-30:1, содержания кислорода в массе – 5-12 %) спустя 7-10 суток получается биоудобрение КМН, характеризующееся экологической чистотой, высоким уровнем биогенности и питательности, обусловленным высвобождением элементов питания из природных биополимеров органического сырья и микробиологическим синтезом вторичных метаболитов в процессе ферментации.

Кроме того, предложена технология переработки отходов животноводства влажностью не более 75 % в высокоэффективные, экологически чистые жидкофазные биосредства для роста и развития растений. В основе технологии лежат ферментационно-экстракционные процессы преобразования органического сырья (навоза крупного рогатого скота, низинного или переходного торфа) с включением стимуляторов различной природы. Главное отличие технологической линии заключается в установлении заданных физико-химических параметров, позволяющих эффективно задействовать исходный потенциал микрофлоры, за счет жизнедеятельности которой формируется качественная продукция.

На основе совместных исследований, выполненных сотрудниками Всероссийского НИИ мелиорированных земель и Тверского государственного технического университета, оптимизирован процесс аэробно-анаэробной твердофазной ферментации смеси органических отходов животноводства и трудногидролизуемого сырья растительного происхождения и предложены научные основы новой ресурсосберегающей, безотходной и экологически чистой технологии утилизации отходов методом биоконверсии при использовании торфонавозных смесей в качестве основного субстрата. На протяжении нескольких суток происходит биотрансформация ферментируемой смеси, а пастеризационных эффект достигается в результате кратковременной обработки продукта ферментации ультразвуком интенсивностью 50–60 Вт/кв. см.

Осуществлена комплексная апробация технологии биоконверсии растительного сырья и органических отходов с получением продукции сельскохозяйственного назначения на опытно-промышленных установках для биоконверсии на базе Тверского государственного технического

№3 (34), 2020

университета, Всероссийского НИИ мелиорированных земель и ООО "Наукоемкое производство". Решены практические вопросы рационального подбора состава субстратных смесей, установления оптимальных технологических режимов, организации контроля за проведением процесса биоконверсии природного органического сырья.

Определены основные технико-экономические и технологические показатели эффективности возможного производства по утилизации отходов путем их биоконверсии с торфонавозными смесями на модульной установке. Показано, что реализация указанного процесса в промышленном масштабе позволит получать высокоэффективную продукцию сельскохозяйственного назначения при одновременном сокращении себестоимости производства. Сочетание таких преимуществ как использование дешевого, доступного и конкурентоспособного органического сырья, а также интенсивных биотехнологических методов его переработки обусловливает высокую экономическую эффективность внедрения создаваемых процессов за счет существенного сокращения затрат на производство продукции сельскохозяйственного назначения.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 18-08-00460).

ЛИТЕРАТУРА

Akhtar, N.; Goyal, D.; Goyal, A. 2015. Biodegradation of leaf litter biomass by combination of Bacillus sp and Trichoderma reesei MTCC164 // Minerva Biotecnologica. Vol.: 27. Pp.: 191–199.

Champagne, Pascale. 2007. Feasibility of producing bio-ethanol from waste residues: A Canadian perspective Feasibility of producing bio-ethanol from waste residues in Canada // Resources Conservation and Recycling. Vol.: 50. Pp.: 211–230.

Champagne, Pascale. 2008. Bioethanol from agricultural waste residues // Environmental Progress. Vol.: 27. Pp.: 51–57.

Rehman, Kashif Ur; Rehman, Abdul; Cai, Minmin. 2017. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.) // Journal of Cleaner Production. Vol.: 154. Pp.: 366–373.

Басамыгин С.В., Васильев С.К., Мохонь В.В., Новоселов С.А. 2000. Способ получения почвовосстановителя. Патент РФ № 2136638.

Волохов В.А., Светушков В.П., Шильников И.А., Аканова Н.И. 2004. Органозольное удобрение и способ его получения. Патент РФ № 2238925. Бюл. № 30.

Ерина Т.Э., Винаров А.Ю. 2006. Биотехнология ускоренной аэробной переработки навоза и ее аппаратурное оформление / отв. ред. А.И. Еськов // Агроэкологические проблемы использования органических удобрений на основе отходов промышленного животноводства: сб. докл. Междунар. науч.-практич. конф. М.: Россельхозакадемия – ГНУ ВНИПТИОУ. С. 298–301.

Еськов А.И., Рябков В.В. 2002. Перспективные технологии использования органических удобрений / отв. ред. А.И. Еськов // Использование органических удобрений и биоресурсов в современном земледелии: материалы Междунар. научно-практ. конф., посвященной 20-летию ВНИПТИОУ. М.: РАСХН – ВНИПТИОУ. С. 62–74.

Злочевский Ф.И., Аксенов А.В., Тысленко А.М., Тарасов С.И. 2006. Новая биотехнология переработки навоза, помета / отв. ред. А.И. Еськов // Агроэкологические проблемы использования органических удобрений на основе отходов промышленного животноводства: сб. докл. Междунар. науч.-практич. конф. М.: Россельхозакадемия – ГНУ ВНИПТИОУ. С. 74–76.

Иванов А.А., Матросова Л.Е., Тремасов М.Я. 2013. Получение и применение биоудобрения на основе птичьего помета // Доклады РАСХН. № 4. С. 28–30.

Ишкаев Т.Х., Тремасов М.Я. 2006. Эффективная технология переработки птичьего помета / отв. ред. А.И. Еськов // Агроэкологические проблемы использования органических удобрений на основе отходов промышленного животноводства: сб. докл. Междунар. науч.-практич. конф. М.: Россельхозакадемия – ГНУ ВНИПТИОУ. С. 79–81.

Ковалев А.А., Ковалев А.А. 2006. Получение биогаза и перспективы снижения расхода воды в системах утилизации навозных стоков на полях орошения / отв. ред. А.И. Еськов // Агроэкологические проблемы использования органических удобрений на основе отходов промышленного животноводства: сб. докл. Междунар. науч.-практич. конф. М.: Россельхозакадемия – ГНУ ВНИПТИОУ. С. 91–96.

Ковалев А.А, Романюк В. 2002. Анаэробная обработка жидкого навоза в технологиях приготовления органических удобрений / отв. ред. А.И. Еськов // Использование органических удобрений и биоресурсов в современном земледелии: материалы Междунар. научно-практ. конф., посвященной 20-летию ВНИПТИОУ. М.: РАСХН — ВНИПТИОУ. С. 168—173.

Ковалев Н.Г., Барановский И.Н. 2006. Органические удобрения в XXI веке (Биоконверсия органического сырья): Монография. Тверь: ЧуДо. 304 с.

Ковалев Н.Г., Малинин Б.М., Туманов И.П. 1997. Способ приготовления компоста многоцелевого назначения. Патент РФ № 2112764.

Кузнецов Е.В., Полторак Я.А., Хаджиди А.Е. 2010. Способ получения вермикомпоста. Патент РФ № 2402510. Бюл. № 30.

Кулагина Е.М., Егоров С.Ю., Азизов С.А., Барабанов В.П. 2008. Способ биологической переработки птичьего помета. Патент РФ № 2322427. Бюл. № 11.

Лужков Ю.М., Джафаров А.Ф., Лужков С.М. 2003. Способ переработки органических отходов. Патент РФ № 2214990. Бюл. № 30.

Лукьяненков И.И. 1985. Перспективные системы утилизации навоза (в хозяйствах Нечерноземья). М.: Россельхозиздат. 176 с.

Марченко А.Ю., Серга Г.В. 2015. Устройство для сушки куриного помета. Патент РФ № 2569570. Бюл. № 33.

Могилевцев В.И., Брюханов А.Ю., Максимов Д.А., Васильев Э.В., Субботин И.А., Чернин С.Я., Парубец Ю.С., Гарзанов А.Л. 2012. Утилизация навоза / помета на животноводческих фермах для обеспечения экологической безопасности территории, наземных и подземных водных объектов в Ленинградской области. / под ред. В.И. Могилевцева. СПб.: СЗНИИМЭСХ Россельхозакадемии. 237 с.

Молчанов В.П., Сульман М.Г., Сульман Э.М. 2015. Ресурсосберегающая биокаталитическая конверсия смесей органических отходов животного и растительного происхождения // Актуальная биотехнология. № 3(14). С. 68–69.

Петраков А.Д., Радченко С.М. 2014. Кавитационный способ обеззараживания жидкого навоза и помета и технологическая линия для безотходного приготовления органоминеральных удобрений. Патент РФ № 2527851. Бюл. № 25.

Потапенко И.А., Лепетухин М.В., Перекопский К.В., Гаркавый К.А., Харченко П.М. 2008. Устройство для обеззараживания навозных стоков. Патент РФ № 2332827. Бюл. № 25.

Правдин В.Г., Бобрицкий Г.А., Толстой Н.И., Гермашев В.Г. 2009. Способ получения биокомпоста на основе сельскохозяйственных отходов, преимущественно подстилочного птичьего помета и навоза домашних животных, при аэробно-анаэробной ферментации (варианты). Патент РФ № 2374211. Бюл. № 33.

Пузанков А.Г., Мхитарян Г.А. 2002. Опыт переработки твердой фракции бесподстилочного навоза, помета методом ускоренного компостирования / отв. ред. А.И. Еськов // Использование органических удобрений и биоресурсов в современном земледелии: материалы Междунар. научно-практ. конф., посвященной 20-летию ВНИПТИОУ. М.: РАСХН – ВНИПТИОУ. С. 91–95.

Рабинович Г.Ю., Ковалев Н.Г., Фомичева Н.В. 2007. Новый вид биологически активных средств: получение, состав, перспективы использования // Вестник российской сельскохозяйственной науки. № 3. С. 71–73.

Серга Г.В., Филин К.В. 1995. Сушилка для куриного помета. Патент РФ № 2027130.

Смирнов А.А., Шиганов О.Л. 2003. Способ получения биогумуса. Патент РФ № 2205163. Бюл. № 2.

Солдатова В.В., Большаков В.Н., Прокопьева В.И., Грудинина Т.Н., Никонов И.Н., Новикова Н.И., Лаптев Г.Ю. 2013. Способ биологической переработки отходов животных / способ утилизации свежего куриного помета. Патент РФ № 2491264. Бюл. № 24.

Степанова Л.П., Половицков В.А., Таракин А.В., Коренькова Е.А. 2009. Способ получения вермикомпоста. Патент РФ № 2363689. Бюл. № 22.

Суховеркова В.Е. 2016. Способы утилизации птичьего помета, представленные в современных патентах // Вестник Алтайского государственного аграрного университета. № 9(1473). С. 45–55.

Терещенко Н.Н., Кравец А.В. 2016. Способ получения вермикомпоста, способ получения стимулятора роста зерновых из вермикомпоста. Патент РФ № 2574740. Бюл. № 4.

Тремасов М.Я., Матросова Л.Е., Иванов А.А., Титова В.Ю., Иванов А.В., Тремасова А.М., Семенов Э.И. 2014. Способ микробиологической переработки птичьего помета. Патент РФ № 2522523. Бюл. № 20.

Триандафилов А.Ф., Федюк В.В. 2011. Устройство для приготовления беззараженного дегельминтизировного удобрения. Патент РФ № 2422415. Бюл. № 18.

Тюрин В.Г. 2004. Экологически безопасные способы обеззараживания и утилизации отходов в животноводстве и птицеводстве // Состояние и проблемы ветеринарной санитарии, гигиены и экологии в животноводстве: материалы межд. науч.-практ. конф. Чебоксары: Чувашская государственная с/х академия. С. 122–125.

Федоров А.Б., Кулагина Е.М., Титова В.Ю. 2012. Способ биологической переработки птичьего помета. Патент РФ № 2445295. Бюл. № 8.

Ферментация: сборник научных статей. 1974. / отв. ред. Д.А. Креслиня. Рига: Зинатне. 238 с.

Фисинин В.И., Архипченко И.А., Попова Э.В., Солнцева И.Э. 1999. Использование птичьего помета для получения микробных удобрений с полифункциональными свойствами // Доклады Россельхозакадемии. № 2. С. 32–34.