УДК 57.577

ДЕЗАМИНАЗЫ СЕМЕЙСТВА AID/APOBEC И СЕЛЕКЦИЯ НОНСЕНС-ТРАНЗИЦИЙ У РНК-ВИРУСОВ

Е.С. Шилов, Л.Г. Данилов, А.А. Власова, В.С. Выников

Московский государственный университет имени М.В. Ломоносова, Москва, Россия

Цитидин-дезаминазы семейства AID/APOBEC вносят существенный вклад в работу противовирусных систем клеток, поскольку способны вносить мутации в однонитевые нуклеиновые кислоты, в том числе вирусные. При этом мишенями дезаминаз APOBEC обычно являются динуклеотиды CC и TC. Отбор, направленный на уменьшение частоты таких динуклеотидов в геноме, позволяет вирусу уменьшить эффективность клеточных систем защиты и потенциально выгоден для патогена, однако для некоторых вирусов высокий уровень мутагенеза позволяет менять последовательность антигенных эпитопов и уходить от иммунного ответа. Поэтому с точки зрения последствий активности цитидин-дезаминаз хозяина для размножения патогена вирусы можно разделить на две группы: для первой группы высокий уровень мутагенеза не является проблемой, для второй группы минусы от катализируемых белками APOBEC транзиций $C \rightarrow U$ (и возникновений большого количества мутаций, в том числе негативных) превышают потенциальную пользу. При этом наиболее радикально и однозначно негативно на размножение вируса влияют нонсенс-транзиции: замены $C \rightarrow U$ в кодонах CGA, CAG и CAA в плюс-цепи, и замены $C \rightarrow U$ в антикодоне CCA в минусцепи (соответствует кодону UGG плюс-цепи).

В работе были проанализированы относительные частоты кодонов CGA (один из 6 аргининовых), CAG, CAA (оба кодируют глутамин) и UGG (кодирует триптофан) в геномах вирусов человека (сгруппированных в соответствии с классификацией Балтимора). Для сравнения использовались частоты тех же кодонов в геноме человека. Для кодона CGA использовался процент использования относительно всех аргининовых кодонов, для кодонов CAG + CAA и UGG – соответственно доля глутамина и триптофана относительно суммарной длины кодируемых последовательностей. Результаты суммированы в таблице ниже:

Геном	UGG (Тгр/размер)	CAG+CAA (Gln/размер)	CGA/Arg	Размер
Человек	0.0128	0.0464	0.1118	19843791
плюс-РНК вирусы (n=22)	0.0179	0.0344	0.0662	4073
минус-РНК вирусы (n=23)	0.0134	0.0359	0.0958	4156
дцДНК вирусы (n=21)	0.0126	0.0401	0.0934	23888
дцРНК вирусы (n=5)	0.0104	0.0364	0.1110	6546
оцДНК вирусы (n=9)	0.0232	0.0526	0.1232	1222
Ретровирусы (n=3)	0.0217	0.0593	0.1377	3313

Ретровирусы и вирусы с оцДНК имеют достоверно более высокую частоту всех четырех кодонов, способных к нонсенс-транзициям, по сравнению с человеком и другими группами вирусов, что указывает на положительную роль APOBEC хозяина в их жизненном цикле, дцДНК вирусы не показывают отличий от человека по частотам кодонов. Как плюс-РНК, так и минус-РНК вирусы показывают уменьшение частоты кодонов с возможными нонсенс-транзициями в плюс-нити (CAA. CAG, CGA) и возможную селекцию геномов против потенциальных мишеней дезаминаз APOBEC.

Работа поддержана грантом РФФИ № 19-34-51014