№3 (34), 2020

УДК 579.258

ВЛИЯНИЕ МУТАЦИИ В ГЕНЕ БАКТЕРИОЛИТИЧЕСКОГО ФЕРМЕНТА Л5 НА БИОГЕНЕЗ ВНЕШНЕМЕМБРАННЫХ ВЕЗИКУЛ LYSOBACTER SP. XL1

И.В. Кудрякова, А.С. Афошин, Т.В. Ивашина, Н.Е. Сузина, Н.В. Васильева

ФИЦ «Пущинский научный центр биологических исследований РАН», Россия Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина РАН, Россия

Бактериолитическая протеаза Л5 *Lysobacter* sp. XL1 является компонентом высокоэффективного антимикробного комплекса Лизоамидаза. Этот белок попадает в окружающую среду посредством внешнемембранных везикул, образуемых клетками *Lysobacter* sp. XL1 [1]. С использованием методов биохимии и электронной иммуноцитохимии были получены результаты, указывающие на то, что белок Л5 принимает участие в биогенезе определённой группы секреторных везикул, содержащих его в своем составе [2–4]. Целью данной работы было подтвердить роль белка Л5 в этом процессе. Для решения поставленной цели был проведен нокаут гена Л5 (*alpB*) и изучено влияние этой мутации на процесс формирования везикул.

Для введения мутации в геном Lysobacter sp. XL1 на основе сущидного вектора pJQ200SK сконструирована плазмида, содержащая фрагмент ДНК с делеционным вариантом alpB (соответствует делеции 40-331 а.о в последовательности Л5-протеазы) и фланкирующими ген последовательностями геномной ДНК. Плазмиду вводили в клетки Lysobacter sp. XL1 методом электропорации с отбором меродиплоидных клонов. Об интеграции плазмиды в геном Lysobacter sp. XL1 свидетельствовала устойчивость трансформантов к гентамицину (маркер плазмиды) и тетрациклину (маркер кассеты, встроенный в участок делеции) и чувствительностью к сахарозе. В результате разрешения меродиплоидов отобраны $Suc^R Tc^R Gm^S$ клоны, в которых произошел двойной обмен между мутантным и диким аллелями гена alpB. Наличие делеции в гене alpB подтверждено методом ПЦР с использованием специфических праймеров и секвенированием.

Анализ бактериолитической активности отобранных делеционных мутантов выявил, что по сравнению с диким типом литическая активность мутантного штамма была в 1,5 раза меньше. Из равных объемов культуры мутантного штамма *Lysobacter* sp. XL1 и дикого типа были выделены препараты везикул методом дифференциального центрифугирования. Методом электронной микроскопии, а также аналитическими методами установлено, что мутантный штамм образует меньшее количество везикул. Данный результат свидетельствует в пользу того, что бактериолитический белок Л5 действительно принимает участие в процессе формирования везикул *Lysobacter* sp. XL1. Полученные результаты позволяют предложить новый механизм биогенеза везикул у грамотрицательных бактерий.

В целом, успешный нокаут гена *alpB Lysobacter* sp. XL1 открывает многие перспективы как в изучении особенностей секреции бактериолитических ферментов и регуляции их генов, так и в создании гомологичной системы экспрессии литических белков, значимых для биомедицины.

Исследование выполнено за счет гранта Российского научного фонда (Проект № 19–74–0086).

ЛИТЕРАТУРА

- 1. Vasilyeva N.V., Tsfasman I.M., Suzina N.E., Stepnaya O.A., Kulaev I.S. Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles // FEBS J. $-2008. V.275. N_{\odot} 15. p. 3827-3835$.
- 2. Kudryakova I.V., Suzina N.E., Vasilyeva N.V. Biogenesis of Lysobacter sp. XL1 vesicles // FEMS Microbiol Lett. −2015. − V.362. − № 18. − fnv137.
- 3. Кудрякова И.В., Сузина Н.Е., Винокурова Н.Г., Шишкова Н.А., Васильева Н.В. Изучение факторов биогенеза везикул Lysobacter sp. XL1 // Биохимия. -2017. -T.82. -№ 4. -c. 677–686.
- 4. Kudryakova I.V., Gabdulkhakov A.G., Tishchenko S.V., Lysanskaya V. Ya., Suzina N.E., Tsfasman I.M., Afoshin A.S., Vasilyeva N.V. Structural and functional properties of antimicrobial protein L5 of Lysobacter sp. XL1 // Appl Microbiol Biotechnol. −2018. − V.102. − № 23. − p. 10043−10053.