№3 (34), 2020

УДК 502

РЕКУЛЬТИВАЦИЯ СВАЛОК И ПОЛИГОНОВ ТВЕРДЫХ КОММУНАЛЬНЫХ ОТХОДОВ С ПРИМЕНЕНИЕМ БИОПРЕПАРАТОВ

К.В. Пищаева¹, Е.А. Никулина², А.С. Макарова¹, А.В. Матасов¹, В.В. Челноков¹

¹Российский химико-технологический университет Д.И. Менделеева, Москва, Россия ²НИЦ «Курчатовский институт» – ИРЕА, Москва, Россия

На территории России находится большое количество полигонов ТКО (твердых коммунальных отходов), которые оказывают негативное воздействие на компоненты окружающей среды [1]. При закрытии полигонов ТКО возникает необходимость в рекультивации [2]. Одним из наиболее безопасных, экономичных и экологических методов очистки почв от загрязнений, является фиторемедиация [3].

Рис. 1 Точки отбора проб с полигона ТКО «Левобережный.

Представленное в работе исследование проводилось для полигона ТКО «Левобережный» расположенного в Московской области на территории г. Химки. Полигон ТКО «Левобережный» является одним из крупнейших полигонов твёрдых коммунальных отходов в Московской области, где за более 40 лет эксплуатации накопилось более 9 миллионов тонн отходов. В 2012 году полигон был закрыт. В 2021—2022 годах полигон планируют рекультивировать. Для оценки состояния почв полигона были отобраны и проанализированы 5 проб грунта с разных точек полигона ТКО «Левобережный» (см. Рис. 1).

Точечные пробы отбирали методом конверта. Результаты анализа образцов почв на полигоне ТКО «Левобережный» представлены в таблице 1.

Таблица 1. Результаты анализа образцов почв на полигоне ТКО «Левобережный»

Dantona	ПДК мг/кг (ГН						Диапазон	
Элемент	2.1.7.2041 - 06)	элементов в почве, мг/кг	1	2	3	4	5	превышения ПДК
Zn	23	50	37	48	33	27	51	1,2-2,2
Cu	3	20	9,9	21,7	13,2	15,9	18,9	3,3-7,2
Co	5	8	5,7	3,9	5,7	5,2	14,2	1,1-2,8
Mn	1500	1000	219	158	36	77	678	-
Fe	Ī	-	10276	9423	7124	15301	26692	-
Cd	2	0,5	0,19	0,17	0,07	0,14	0,48	-
Cr	6	100	15,7	24,4	13,1	23,5	59	2,2-9,8
Pb	32	10	10,7	12,4	12	9,4	12	-
Ni	4	40	10,2	9,9	5,7	12,6	28,5	1,4-7,1
Hg	2,1	0,03	<0,5	<0,5	<0,5	<0,5	<0,5	-
As	2	6	5,9	4,2	2,6	6,4	10,6	

Результаты анализа проб показали превышение ПДК почвы по следующим элементам: Zn, Cu, Co, Cr, Ni.

Экспериментальная оценка эффективности использования различных видов растения для фиторемедиации загрязненных почв полигона проводилась в лабораторных условиях на модельном грунте, имитирующим почвы полигона ТКО «Левобережный».

Для проведения оценки были отобраны быстрорастущие растения, которые широко распространены в России: горчица белая (Sinapis alba), рожь озимая (Secale cereale), овес яровой (Avena sativa), клевер луговой (Trifolium pratense), редька масличная (Rhophanus sativa var. oleifera leetzg) и горчица сарептская (Brassica juncea). Данные виды растений были посажены в вегетационные сосуды с загрязненной и контрольной почвой в соответствии с ГОСТ Р ИСО 22030–2009 [4].

Также в ходе исследования была оценена эффективность использования гибридного биопрепарат нового поколения «Почвовит» (торговая марка 559263) для повышения роста и развития на загрязненных почвах [5].

Результаты эксперимента показали наиболее стойкими к воздействию тяжелых металлов, являются горчица сарептская ($Brassica\ juncea$) и овёс яровой ($Avena\ sativa$), что позволяет использовать их в процессе фиторемедиации почв.

Добавление препарата «Почвовит» оказало положительное влияние на рост только у определённых видов растений: горчицы белой (*Sinapis alba*), ржи озимой (*Secle cereale*), горчицы сарептской (*Brassica juncea*) и овса ярового (*Avena sativa*). Результаты приведены в таблице 2.

Растения	Усредненная разн высотой растений контрольн	в загрязненной и	Усредненная разница (Д, см) между высотой растений в почве с добавлением «Почвовита» в загрязненной и контрольной почве		
	Осень	Весна	Осень	Весна	
Горчица белая	-1,23	3,76	2,18	-0,14	
Горчица сарептская	0,11	1,20	0,10	0,45	
Овес яровой	-0,26	0,88	-0,27	0,62	
Рожь озимая	-1,95	-0,02	1,43	-0,05	
Клевер луговой	-0,34	0,36	0,14	0,33	
Редька	-1,48	0,31	0,17	0,29	

Таблица 2. Усредненная разница между высотой растений в вегетационных сосудах

Работа выполнена при финансовой поддержке гранта РФФИ № 18-29-25071.

ЛИТЕРАТУРА

- 1. Рекомендации по проектированию, строительству и рекультивации полигонов ТБО // Академия коммунального хозяйства им. К.Д. Памфилова Москва, 2009. 27 с.
- 2. Makarova A.S., Meshalkin V.P., Klemeš J.J., Kudryavtseva E.I, Bulatov I., Ecological and Economic Model of Performance Evaluation of the Companies Involved in the Responsible Care® Program, Chemical Engineering Transactions, 61. 2017. P.1477–1482.
- 3. Куприенко П.С., Ашихмина Т.В., Овчинникова Т.В., Пинчук М.И. Рекультивация закрытых полигонов ТБО // Пожарная безопасность: проблемы и перспективы. Воронеж, 2017. Т.1. № 8. С. 445–447.
- 4. ГОСТ Р ИСО 22030–2009 Качество почвы. Биологические методы. Хроническая фитотоксичность в отношении высших растений. Введ. 01.01.11. М.: Стандартинформ, 2019. 16 с.
- 5. Винаров А.Ю., Челноков В.В., Дирина Е.Н. Агрохимия: биодобавки для роста растений и рекультивации почв: учеб. пособие для бакалавриата и магистратуры. 2-е изд., пер. и доп. М.: Издательство Юрайт, 2018. 149 с.