№3 (34), 2020

УДК 502

ВЛИЯНИЕ ПРОТИВОГОЛОЛЕДНОГО РЕАГЕНТА НА ОСНОВЕ КОМПОЗИЦИИ ХКНТВ НА ФИТОТОКСИЧНОСТЬ РАСТЕНИЙ

К.В. Пищаева¹, А.С. Макарова¹, А.В. Матасов¹, В.В. Челноков¹

¹Российский химико-технологический университет Д.И. Менделеева, Москва, Россия

За последние несколько лет исследователями почти не затрагивалась проблема воздействия противогололедных реагентов (ПГР) на наземные растения, включая морфологические, физиологические изменения и адаптивные реакции при засолении.

Однако, ранее исследователями было отмечено, что при засолении почвы легкорастворимыми солями (которые чаще всего входят в состав применяемых в РФ противогололедных реагентов) отмечается значительное ухудшение состояния растений. Избыток ионов Na^+ и Cl^- может приводить как к осмотическому стрессу, обусловленному дефицитом воды, так и оказывать воздействие на критические биохимические процессы [1, 2]. Во время солевого стресса могут задерживаться появление листьев, замедляется их расширение и способствует старению листьев. Это может быть временным эффектом, а длительное воздействие высокой солености может нанести больший вред, когда ионы Na^+ накапливается в высоких концентрациях [2, 3]. Увеличение концентрации Na^+ может не только снижать активность Ca^{2+} , но также может нарушить на клеточном уровне получение Ca^{2+} [4].

При оценке воздействия солей на растения большой интерес представляет анализ соотношения масс побега и корня. Известно, что степень развития корневой системы определяет устойчивость растений к дефициту воды, который является одним из важных факторов ростингибирующего действия засоления [5].

В результате анализа, приобретенных московскими организациями противогололедных реагентов (см. Рис. 1), авторами отмечено одним из самых закупаемых (по количеству) является жидкий многокомпонентный противогололедный реагент на основе композиции хлористого кальция и натрия (ХКН): жидкий (ХКНж) или твердый (ХКНтв).

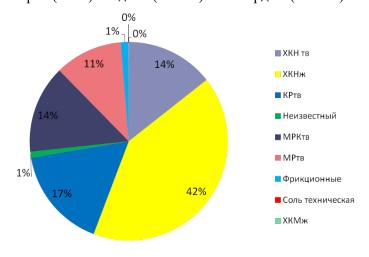


Рис. 1 Общее количество ПГР, приобретенных московскими организациями на осенне-зимний период 2018–2019 гг.

В представленной работе проведено исследование фитопатологического воздействия ХКНтв на горчицу белую (Sinapis alba) И редьку масличную (Raphanus Sativus). Фитотоксичность ХКНтв опенивали по таким морфологическим показателям, как средняя высота проростков, масса зеленой и корневой части растений.

Также в работе было изучено возможное защитное действие гибридного биопрепарата нового поколения «Почвовит» (тороговая марка 559263). Данный препарат нормализует белковый обмен в клетках растений и стимулирует развитие растения в целом [6]. Раствор препарата добавлялся в вегетационные сосуды один раз в два дня. Растения высаживались в соответствии с ГОСТ Р ИСО 22030–2009.

В таблице 1 представлены значения корневой и зеленой массы горчицы белой (Sinapis alba) и редьки масличной (Raphanus Sativus).

В результате проведенного экспериментального тестирования было установлено: при добавлении соли зеленая масса горчицы белой (Sinapis alba) с увеличение концентрации снижается, а корневая увеличивается. У редьки масличной наблюдается значительное увеличение корневой массы (Raphanus Sativus). Редька масличная (Raphanus Sativus) значительно более устойчива к действию ХКНтв по сравнению с горчицей белой (Sinapis alba), а применение биопрепарата «Почвовит», позволяет увеличить время жизни растений.

Концентрация ПГР (г/л)		Горчица белая				Редька масличная			
	Масса п	Масса побега		Масса корня		Масса побега		Масса корня	
	грамм	(%)	грамм	(%)	грамм	(%)	грамм	(%)	
ПГР									
0,01	0,559	69	0,158	35	1,015	95	0, 312	106	
0,03	0,3	37	0,218	48	1,022	95	0,689	229	
0,05	0,264	32	0,306	68	0,409	38	0,331	109	
ПГР + «Почвовит» (однократно)									
0,01	0,877	109	0,741	165	0,717	67	0,240	79	
0,03	0,33	40	0,375	83	0,66	62	0,228	76	
0,05	0,25	31	0,318	70	0,071	7	0,074	25	
ПГР + «Почвовит» (многократно)									
0,01	0,964	120	0,886	197	0,571	53	0,514	170	
0,03	0,217	59	0,224	97	0,745	69	0,347	115	
0,05	0,473	27	0,438	50	0,412	38	0,385	127	

Таблица 1. Результаты зеленой и корневой массы растений

Полученные результаты показали, что применение ХКНтв приводят к увеличению содержанию в почве ионов Na^+ , Cl^- и незначительному увеличению Ca^{2+} , что в свою очередь приводит к уменьшению зеленой массы растений. Это объясняется нарушением водного обмена растений вызванного действием засоления.

Работа выполнена при финансовой поддержке гранта РФФИ № 18-29-24185.

ЛИТЕРАТУРА

- 1. Daia H.L., Zhanga K.L., Xua X.L., Yua H.Y. Оценка воздействия противогололедных химических веществ на почву и водную среду, 18-я Международная конференция Международного общества по экологическому моделированию, 2011. С. 2122–2130.
- 2. Тавакколи Э., Ренгасами П., Макдональд Г.К. Высокие концентрации ионов Na $^+$ и Cl $^-$ в почвенном растворе оказывают одновременно вредное воздействие на рост бобов faba в условиях соленого стресса, Journal of Experimental Botany, 2010. С. 4449–4459, doi: 10.1093/jxb/erq251.
- 3. Тавакколи Э., Ренгасами П., Макдональд Г.К. Реакция ячменя на засоленный стресс различна для гидропоники и почвенных систем. Функциональная биология растений, 2010. С. 621–633.
- 4. Реза Хади М., Карими Н. Роль кальция в устойчивости растений к соли. Журнал питания растений, 2012, doi: 10.1080 / 01904167.2012.717158.
- 5. Тарасова Н.П., Макарова А.С. Оценка химического загрязнения в контексте границ планеты, Российский химический вестник, 2016. С. 65 (5), 1383–1394.
- 6. Винаров А.Ю., Челноков В.В., Дирина Е.Н. Агрохимия: биодобавки для роста растений и рекультивации почв: учеб. пособие для бакалавриата и магистратуры. 2-е изд., пер. и доп. М.: Издательство Юрайт, 2018. 149 с.