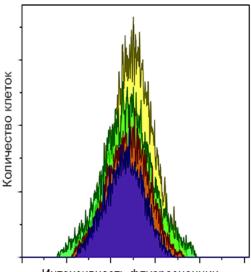
УДК 576.33

ВЛИЯНИЕ ДВУХ ТИПОВ ПРОТИВОГРИППОЗНЫХ ВАКЦИН НА ФУНКЦИОНАЛЬНУЮ АКТИВНОСТЬ НЕЙТРОФИЛОВ ПЕРИФЕРИЧЕСКОЙ КРОВИ


H.Д. Федорова 1 , Д.А. Сумбатян 1 , М.А. Стукова 2 , Е.Ю. Варфоломеева 1

 1 НИЦ Курчатовский институт — ПИЯ Φ , Россия 2 НИИ гриппа им. А.А. Смородинцева Минздрава России

Нейтрофилы представляют собой первую линию защиты системы врождённого иммунитета. При столкновении с инфекционными частицами нейтрофил начинает осуществление процесса по их уничтожению [1–5]. Инфекционная частица поглощается нейтрофилом посредством фагоцитоза [6], а различные разрушающие агенты, включая активные формы кислорода (АФК), образованные в результате деятельности НАДФ-оксидазы в процессе развития реакции респираторного взрыва (РРВ), убивают и разрушают чужеродные микроорганизмы [7,8,9].

Для оценки интенсивности реакции респираторного взрыва (PPB) в нейтрофилах периферической крови использовали проточноцитометрический метод, разработанный в лаборатории клеточной биологии НИЦ «Курчатовский институт» – ПИЯФ [10, 11]. В качестве красителя использовали гидроэтидин, окисляющийся только радикалами кислорода (продуктами первой стадии PPB, запускающими дальнейший каскад реакций), обеспечивающий высокую точность исследования. Стимуляцию PPB осуществляли при помощи форболового эфира. С использованием этого метода было установлено «стандартное распределение» нейтрофилов здоровых доноров по способности продуцировать АФК (Рис. 1) [11]. Разница в реакции между средними значениями составляла не более 8.4 %.

Ранее было проведено исследование изменения функциональной активности нейтрофилов, а именно, интенсивности РРВ, при ОРВИ (выборка — 14 человек), показавшее, что способность нейтрофилов к РРВ повышается в первые 48 часов после начала заболевания с последующим возвращением к норме в случае выздоровления, либо понижением в случае подключения бактериальной инфекции (Рис. 2).

. Интенсивность флуоресценции Рисунок 1. Гистограмма распределения нейтрофилов по способности к реакции респираторного взрыва у здоровых доноров. Каждый цвет соответствует одному донору

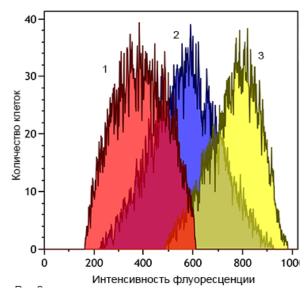


Рисунок 2. Гистограмма распределения нейтрофилов по способности к реакции респираторного взрыва для: 1 — пациентов с бактериальной инфекцией, 2 — здоровых доноров, 3 — пациентов с вирусной инфекцией

№3 (34), 2020

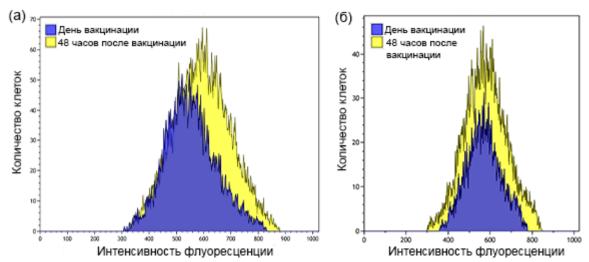


Рисунок 3. Оценка способности нейтрофилов к реакции респираторного взрыва в день вакцинации и через 48 часов после неё. (а) Гистограмма распределения нейтрофилов по способности к PPB после вакцинации живой гриппозной вакциной (ЖГВ); (б) Гистограмма распределения нейтрофилов по способности к PPB после вакцинации инактивированной гриппозной вакциной "Ультрикс"

С целью дальнейшего изучения наблюдаемого эффекта были проведены измерения функциональной активности нейтрофилов здоровых людей после вакцинации противогриппозными вакцинами. Основываясь на результатах вышеописанного эксперимента, измерения производили в день вакцинации и через 48 часов после неё. Исследование показало, что инактивированная гриппозная вакцина (ИГВ) не оказывает влияния на функциональную активность нейтрофилов (Рис. 3(а)), в то время как треть вакцинированных живой гриппозной вакциной (ЖГВ) продемонстрировали изменение данной активности, аналогичное первоначальному исследованию больных с ОРВИ (Рис. 3(б)). В обоих экспериментах выборка составила 6 человек. Полученные результаты могут быть свидетельством опосредованного влияния, оказываемого вирусами (вирусными инфекциями) на функциональную активность нейтрофилов, а именно на их способность к реакции респираторного взрыва. Вполне вероятно, что это влияние опосредовано и осуществляется через провоспалительные факторы плазмы крови, например, белки острой фазы воспаления.

ЛИТЕРАТУРА

- 1. Kaufmann SH. Immunology's foundation: the 100 year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat Immunol 2008; 9:705–12.
- 2. Witko-Sarsat et al. Regulating neutrophil apoptosis: new players enter the game. Trends Immunol. 2011. 32:117-124.
- 3. Pillay et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 2010. 116:625–627.
- 4. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010. 33:657-670.
- 5. Bratton D.L. and P.M. Henson Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol. 2011.32:350-357.
- 6. Nordenfelt P. and Tapper H. Phagosome dynamics during phagocytosis by neutrophils. J. Leukoc. Biol. 2011. 90:271–284.
- 7. Borregaard N. et al. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 2007. 28:340–345.
- 8. Leto T.L. and Geiszt M. Role of Nox family NADPH oxidases in host defense. Antioxid. Redox Signal. 2006. 8:1549–1561.
- 9. Soehnlein O. Direct and alternative antimicrobial mechanisms of neutrophil-derived granule proteins. J. Mol. Med. 2009. 87:1157–1164.
- 10. Filatov M., Varfolomeeva E., Ivanov E. Flow cytofluorometric detection of inflammatory processes by measuring respiratory burst reaction of peripheral blood neutrophils // Biochem. Mol. Med. 1995 Vol. 55, N 2. P. 116–121.
- 11. Е.Ю. Варфоломеева и др. Регистрация воспалительных процессов при различных заболеваниях методом проточной цитофлюорометрии // Бюллетень экспериментальной биологии и медицины. 2010. Т. 149, № 4. С. 471-475.