№3 (34), 2020

УДК 577.1

ФЛУОРЕСЦЕНТНЫЙ МЕТОД ПОИСКА ИНГИБИТОРОВ ВЗАИМОДЕЙСТВИЯ ИНТЕГРАЗЫ ВИЧ-1 И КЛЕТОЧНОГО БЕЛКА КU70 И ЕГО ПРИМЕНЕНИЕ ДЛЯ ХАРАКТЕРИСТИКИ ИНГИБИРУЮЩЕГО ПОТЕНЦИАЛА КОНЪЮГАТОВ ОЛИГОНУКЛЕОТИДОВ С ЭОЗИНОМ

А.Н. Анисенко. С.О. Галкин, А.А. Розина, М.Б. Готтих

Московский государственный университет имени М.В. Ломоносова», Москва, Россия

Одной из наиболее перспективных стратегий для создания принципиально новых антивирусных препаратов является поиск соединений, нарушающих взаимодействие вирусных белков с их клеточными партнерами. Подобная стратегия наиболее востребована в случае РНК-вирусов, которые быстро развивают лекарственную устойчивость к ингибиторам вирусных ферментов. Ранее мы показали, что связывание интегразы ВИЧ-1 с человеческим белком Ки70 необходимо для эффективного восстановления повреждений ДНК, вызванных интеграцией вирусной кДНК. В текущей работе мы разработали флуоресцентный метод анализа взаимодействия между этими белками для поиска ингибиторов взаимодействия между интегразой ВИЧ-1 и клеточным белком Кu70. В основе этого метода лежит использование генетически закодированных флуорсецентных меток, введенных в состав как интегразы, так и белка Ки70. Используя этот метод, мы изучили взаимосвязь между структурой конъюгатов олигонуклеотидов с эозином и активностью этих соединений против образования комплексов интегразы ВИЧ-1 и Ки70. Мы показали, что их ингибирующее действие в основном объясняется азотистыми основаниями, а не сахаро-фосфатным остовом олигонуклеотидной части ингибитора. Также мы показали, что по мере увеличения длинны олигонуклеотидной части ингибитора от 5 до 15 звеньев повышается их ингибирующее действие. Однако уже 11-звенного конъюгата достаточно, чтобы эффективно нарушать взаимодействие между белками $(IC50=135\pm20 \text{ HM}).$

Работа поддержана грантом РФФИ 18-29-08012.

УДК 577.115

КЕРАСОМЫ НА ОСНОВЕ СИЛОКСАНОВОГО ПРОИЗВОДНОГО L-ОРНИТИНА С НЕНАСЫШЕННЫМИ УГЛЕВОЛОРОЛНЫМИ ПЕПЯМИ

У.А. Буданова, Дениева З.Г., Ю.Л. Себякин

Российский технологический университет, Москва, Россия

Керасомы в настоящее время интересны в качестве нового типа транспортной системы для трансфекции, а также в терапии опухолей. Это искусственные биоорганические гибридные липосомы, содержащие силоксановую сеть на поверхности двухслойной мембраны [1]. Известно, что при введении ненасыщенной связи в гидрофобный блок амфифилов эффективность трансфекции возрастает [2]. Наличие такой связи в углеводородной цепи липида обеспечивает большую площадь поперечного сечения алифатического фрагмента, повышенную текучесть двухслойной мембраны и, следовательно, стимулирует слияние катионных липосом с клеточными мембранами и облегчают проникновение через них [3]. Нами разработана схема синтеза силоксанового производного L-орнитина с ненасыщенными углеводородными цепями. Аминогруппы аминокислоты блокировали Вос-защитой. Далее проводили реакцию присоединения олеиламина, который выступает в качестве гидрофобного блока. Для этого к активированной с помощью DCC в присутствии HOBt карбоксильной группе добавляли олеиламин в среде безводного хлористого метилена. Удаление защитных групп проводили действием трифторуксусной кислоты с последующей обработкой соли раствором NaHCO₃. Полярную кремний-органическую головную группу амфифила формировали реакцией с (3-триэтоксисилил) пропилизоцианатом. Преимуществом выбранного реагента является простота протекания реакции аминогруппы с изоцианатной группой при комнатной температуре. Кроме того, в структуре появляется производное мочевины, которая играет значительную роль в метаболизме многих веществ в организме [4]. Структуру целевого соединения подтверждали данными ¹ H-ЯМР-спектроскопии и масс-спектрометрии. Получены дисперсии на основе катионного липида [5] и керасомообразующего липида в соотношении 1:1. Проведено комплексное изучение физико-химических, мембранообразующих свойств керасомальных агрегатов (размер частиц, дзета-потенциал, ТФП, стабильность).

Работа поддержана грантом Российского фонда фундаментальных исследований, грант РФФИ № 19–04–00775.

ЛИТЕРАТУРА

Liang X., Gao J., Jiang L. et al. // ACS Nano. 2015. 9. 1280.; Obika S., Yu W., Shimoyama A. et al. // Bioorg. & med. chem. 2001. 9. 245.; Felgner J.H., Kumar R., Sridhar C.N. et al. // The J. of boil. chem. 1994. 269. 2550.; Niyomtham N., Apiratikul N., Suksen K., et. al. // Bioorg. Med. Chem. Lett. 2015. 25. 496.; Дениева З.Г., Буданова У.А., Себякин Ю.Л. // Тонкие химические технологии. 2019. 14. 42.