УДК 579.64

ЭФФЕКТИВНОСТЬ АССОЦИАЦИИ МОЛОЧНОКИСЛЫХ БАКТЕРИЙ С ДРОЖЖАМИ В ОТНОШЕНИИ ФИТОПАТОГЕННЫХ МИЦЕЛИАЛЬНЫХ ГРИБОВ

В.С. Ржевская, Л.М. Теплицкая, Е.Ф. Семенова

Крымский федеральный университет имени В.И. Вернадского, Симферополь, Россия

Защита растений от болезней определяет стабильность сельскохозяйственного производства. Нерациональное применение агрономических приемов привело к формированию устойчивых рас возбудителей болезней, уменьшению численности практически всех эколого-трофических групп микроорганизмов и снижению биологической активности почв. Вследствие подавления автохтонной полезной микрофлоры увеличилась численность фитопатогенных видов, процесс саморегуляции и самоочищения почвы нарушен [5].

Известно, что в основе высокой антагонистической активности молочнокислых бактерий лежит генетически детерминированная способность к продукции антимикробных веществ, что позволяет им конкурировать с другими продуцентами антибиотиков. Молочнокислые бактерии, находясь в симбиотических отношениях между собой или с другими группами микроорганизмов, образуют ассоциации, которые могут обладать новыми и уникальными свойствами, в частности, антифунгальными.

Целью нашей работы является сравнение антагонистической активности молочнокислых бактерий, составленной их них и дрожжей *Pichia accidentalis* F7/20 микробной ассоциации по отношению к фитопатогенным микромицетам. Объектами исследования служили чистые культуры молочнокислых гомоферментативных стрептобактерий рода *Lactobacillus* (*L.casei* B 2/20 и *L. plantarum* В 1/20), молочнокислого гомоферментативного стрептококка *Lactococcus lactis* В 3/20 и их ассоциативная культура с дрожжами *Pichia accidentalis* F7/20. В качестве тест-культур использовали выделенные из почвы изоляты следующих видов фитопатогенных грибов: *Fusarium moniliforme*, *F. sulphureum*, *Alternaria alternata*, *Stachybotrys alternans*. Изучение антагонистической активности по отношению к микромицетам проводили методом агаровых блоков с отсроченным антагонизмом [1], при температуре 24 °C. Зоны отсутствия (подавления или ингибирования) роста тест-культуры рассматривали как проявление фунгицидного действия, а отклонения в развитии мицелия (задержка развития) по сравнению с контролем свидетельствовала о фунгистатическом действии [1]. Химический анализ биологически активных соединений в культуральной жидкости микробной ассоциации был проведен в Испытательном центре по контролю качества пищевой продукции "Магарач" методами высокоэффективной жидкостной хроматографии и газовой хроматографии.

Результаты проведенного нами исследования показали, что по отношению к F. moniliforme штаммы L. plantarum B 1/20 и L. casei B 2/20 не обладают антагонистической активностью (рис. 1, табл. 1). Штамм L. lactis B 3/20 (рис. 1в) вызывал ингибирование роста фитопатогенного гриба в зоне до $13\pm0,2$ мм. Ассоциация микроорганизмов образовывала зону подавления $25\pm0,5$ мм (рис. 1г). В контрольном варианте по всей чашки Петри наблюдался рост мицелия, вплоть до блока (1д).

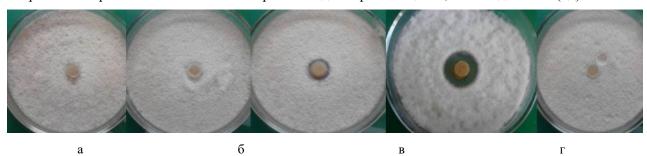


Рисунок 1. Антагонистическая активность штаммов молочнокислых бактерий и ассоциативной культуры по отношению к F. moniliforme: a-L. casei B 2/20, f -L. plantarum B 1/20, g -L. lactis B 3/20, g -L0 микробная ассоциация, g -L0 контроль

№3 (34), 2020

Таблица 1 Антагонистическая активность молочнокислых бактерий и микробной ассоциации по отношению к Fusarium moniliforme

Культура	Диаметр зоны отсутствия роста или задержки развития мицелия, мм		
	фунгицидная активность	фунгистатическая активность	
L. casei B 2/20	0	0	
L. plantarum B 1/20	0	0	
L. lactis B 3/20	13±0,2	0	
микробная ассоциация	25±0,5	0	

Таблица 2 Антагонистическая активность молочнокислых бактерий и микробной ассоциации по отношению к Fusarium sulphureum

Культура	Диаметр зоны отсутствия роста или задержки развития мицелия, мм		
	фунгицидная активность	фунгистатическая активность	
L. casei B 2/20	20±2,5	0	
L. plantarum B 1/20	13±1	0	
L. lactis B 3/20	18±1	0	
микробная ассоциация	28±1,5	0	

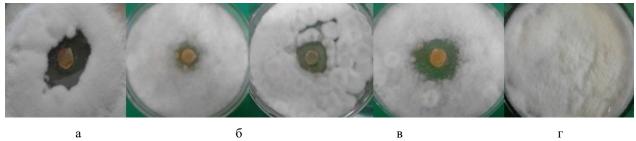


Рисунок 2. Антагонистическая активность молочнокислых бактерий и микробной ассоциации по отношению к F. sulphureum: a-L. casei~B~2/20,~f-L. plantarum~B~1/20,~g-L. lactis~B~3/20,~r- микробная ассоциация, д – контроль

Таким образом, изучаемая ассоциация микроорганизмов по отношению к F. moniliforme обладает фунгицидной активностью, обусловленной преимущественно метаболитами L. lactis B 3/20 (табл. 5), и не оказывает микостатического эффекта.

Штаммы L. casei В 2/20 и L. plantarum В 1/20 по отношению к F. sulphureum обладали антагонистической активностью и образовывали зону подавления роста микромицета $20\pm2,5$ мм и 13 ± 1 мм соответственно. Штамм L. lactis 3/20 подавлял рост F. sulphureum в зоне 18 ± 1 мм. В контрольном варианте по всей чашки Петри наблюдался рост мицелия, в том числе и на блоке (2π) .

Микробная ассоциация по сравнению с культурами молочнокислых бактерий образовывала наибольшую зону подавления роста F. $sulphureum-28\pm1,5$ мм. Следовательно, фунгицидная активность микробной ассоциации превышает таковую у монокультур молочнокислых бактерий. Таким образом, микробная ассоциация в условиях проведенного эксперимента обладала высокой фунгицидной активностью (>20 мм) по отношению к фитопатогенному грибу F. sulphureum, и не оказывала на него микостатического эффекта.

Рост гриба Alternaria alternata штаммы L. casei В 2/20 и L. lactis B 3/20 подавляли в зоне 15 ± 2 и 16 ± 2 мм, соответственно (рис. 3а, б), нарушений в развитии гриба не отмечено (табл. 3). Штамм L. plantarum В 1/20 не оказывал влияния ни на рост, ни на развитие гриба. Микробная ассоциация образовывала зону отсутствия роста A. alternata 18 ± 1 мм (рис. 3в). В контрольной чашке Петри вся агаровая пластинка была покрыта спороносящим мицелием.

Таким образом, микробная ассоциация обладала фунгицидной активностью по отношению к *Alternaria alternata* и не оказывала микостатического эффекта.

Рост S. alternans штаммы L. casei B 2/20 и L. plantarum B 1/20 подавляли в круге диаметром 25±1 мм и 26±2 мм, соответственно (рис. 4 а, б). В зонах $25\pm1-75\pm2$ и $26\pm2-39\pm1$ мм отмечен недостаточно выраженный рост грязно-белого неспорулирующего мицелия. В оставшейся части чашки Петри отмечен темный мицелий, находящийся на стадии образования органов спороношения.

Штамм L. $lactis\ B\ 3/20$ образовывал зону задержки роста микромицета диаметром 26 ± 1 мм. На остальной части чашки Петри наблюдался рост грязно-белого стерильного мицелия. Микробная ассоциация подавляла рост S. alternans в зоне 28 ± 1 мм. В зоне $28\pm1-65\pm2,5$ мм наблюдался рост стерильного грязно-белого мицелия. В зоне $65\pm2,5-90$ мм отмечен рост низкого темного мицелия с образующимися органами спороношения. В контрольном варианте по всей поверхности чашки Петри наблюдали рост спорулирующего мицелия.

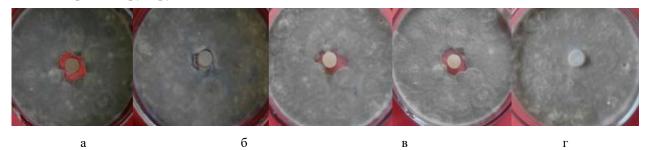


Рисунок 3. Антагонистическая активность молочнокислых бактерий и микробной ассоциации по отношению к *Alternaria alternata*: а – *L. casei* В 2/20, б – *L. plantarum* В 1/20, в – *L. lactis* В 3/20, Γ – микробная ассоциация, д – контроль

Таблица 3 Антагонистическая активность молочнокислых бактерий и микробной ассоциации по отношению к Alternaria alternata

Культура	Диаметр зоны отсутствия роста или задержки развития мицелия, мм		
	фунгицидная активность	фунгистатическая активность	
L. casei B 2/20	15±2	0	
L. plantarum B 1/20	0	0	
L. lactis B 3/20	16±2	0	
микробная ассоциация	18±1	0	

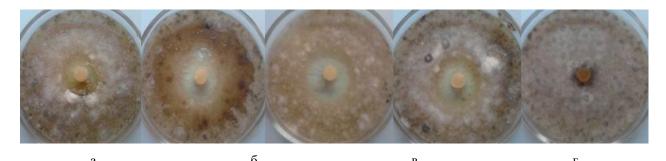


Рисунок 4. Антагонистическая активность молочнокислых бактерий и микробной ассоциации по отношению к *Stachybotrys alternans*: а – *L. casei* В 2/20, б – *L. plantarum* В 1/20, в – *L. lactis* В 3/20, г – микробная ассоциация, д – контроль

Таблица 4 Антагонистическая активность молочнокислых бактерий и микробной ассоциации по отношению к Stachybotrys alternans

Культура	Диаметр зоны отсутствия роста и задержки развития мицелия, мм		
	фунгицидная активность	фунгистатическая активность	
L. casei B 2/20	25±1	$25\pm1-75\pm2$	
L. plantarum B 1/20	26±2	$26\pm2-39\pm1$	
L. lactis B 3/20	26±1	$26\pm1-90$	
микробная ассоциация	28±1	$28\pm1-65\pm2,5$	

№3 (34), 2020

Микробная ассоциация по отношению к S. alternans обладает высокой фунгицидной активностью — 28 ± 1 мм, превышающей таковую у монокультур молочнокислых бактерий, а также проявляет фунгистатическую активность.

Проведенные исследования показали, что штаммы молочнокислых бактерий обладают различной антагонистической активностью по отношению к фитопатогенным микромицетам, которая проявляется в виде фунгицидного и фунгистатического эффекта. Так, L. casei В 2/20 проявлял низкую фунгицидную активность (зона задержки роста менее 20 мм) по отношению к A. alternata, высокую активность (зона задержки роста более 20 мм) в отношении F. sulphureum и S. Alternans, не обладал антагонистической активностью по отношению к F. moniliforme.

Штамм L. plantarum В 1/20 обладал высокой антагонистической активностью в отношении S. Alternans, не подавлял рост A. alternata, F. moniliforme, по отношению к F. sulphureum фунгицидная активность была менее 20 мм.

Штамм L. lactis B 3/20 проявлял низкую фунгицидную активность в отношении F. moniliforme, F. sulphureum и A. alternata, высокую фунгицидную активность в отношении S. alternans.

Микробная ассоциация проявила слабую фунгицидную активность в отношении A. alternata. А по отношению к F. moniliforme, F. sulphureum, S. alternans микробная ассоциация показала высокую фунгицидную активность (>20 мм). Фунгистатическую активность монокультуры молочнокислых бактерий и микробная ассоциация проявили в отношении Stachybotrys alternans.

Результаты проведенных исследований показали, что фунгицидная активность микробной ассоциации превышает таковую у монокультур молочнокислых бактерий. Так, в отношении F. moniliforme L. casei B 2/20 и L. plantarum B 1/20 не проявляли антагонистической активности. При этом зоны отсутствия роста при воздействии составили L. lactis B 3/20 - 17 мм, а консорциума - 25 мм. Такая же закономерность отмечена при действии микробной ассоциации на такие микромицеты, как A. alternata. F. sulphureum.

Биохимический анализ культуральной жидкости микробной ассоциации показал содержание разнообразных метаболитов, обладающих антибактериальным и антимикотическим действием (табл. 5). Дрожжи *P. accidentalis*, входящие в состав микробной ассоциации, выделяют спирты, что усиливает антибиотическое действие органических кислот — основных метаболитов лактобактерий [4]. Синергетическое действие спиртов и органических кислот приводит к более высокой антагонистической активности микробной ассоциации по сравнению с монокультурами молочнокислых бактерий.

Таблица 5 Противомикробные вещества, обнаруженные в культуральной жидкости микробной ассоциации

Вещество	Антибактериальный эффект	Антимикотический эффект	Содержание, мг/л
сквален	+	+	89,7
диметилфумарат	-	+	8,06
каприновая кислота	+	+	8,77
молочная кислота	+	-	1030,0

Помимо антибиотических свойств метаболитов микробной ассоциации, продукты обмена веществ молочнокислых бактерий и дрожжей стимулируют развитие друг друга. Так, молочнокислые бактерии выделяют органические кислоты, которые создают кислую среду, благоприятную для развития дрожжей. Кроме того, органические кислоты служат источником углеродного питания дрожжевых клеток. В свою очередь, дрожжи стимулируют рост молочнокислых бактерий, устраняя избыток молочной кислоты и обогащая субстрат витаминами. Отмирающие клетки дрожжей содержат много белков, являющихся хорошим источником азота для бактерий [3].

Таким образом, увеличение зоны подавления тест – организма ассоциацией микроорганизмов по сравнению с действием монокультур, свидетельствует о том, что взаимоотношения микроорганизмов образованной ассоциации можно охарактеризовать как синергизм. Явление синергизма, позволяющее молочнокислым бактериям и дрожжам успешно конкурировать с микромицетами за источники питания в естественной среде обитания, позволяет использовать его при разработке микробиологических препаратов, направленных на защиту растений от фитопатогенных микроорганизмов.

№3 (34), 2020

ЗАКЛЮЧЕНИЕ

Выявлена фунгицидная и фунгистатическая активность монокультур молочнокислых бактерий и микробной ассоциации по отношению к фитопатогенным грибам.

Показано, что эффективность подавления фитопатогенов выше у микробной ассоциации, по сравнению с монокультурами лактобактерий.

Определено наличие в культуральной жидкости веществ, обладающих антибактериальными и антимикотическими свойствами: сквален, диметилфумарат, каприновая кислота, молочная кислота.

ЛИТЕРАТУРА

Зенова, Г.М. Практикум по биологии почв / Г.М. Зенова, А.Л. Степанов, А.А. Лихачев, Н.А. Манучарова. М.: Изд-во МГУ, 2002. - 120 с.

Куприянов, А.А. Перемещение бактерий из экскрементов животных в почву и сопряженные с ней местообитания / А.А. Куприянов, Н.Н. Куненкова, А.Х.К. Ван Бругген, А.М. Семенов // Почвоведение, 2009. – № 11. – С. 1354—1361. Лысак, В.В. Микробиология: учебное пособие / В.В. Лысак. Минск: БГУ, 2007. – 426 с.

Ратникова, И.А. Биологические основы создания пробиотиков направленного действия для медицины, сельского хозяйства и перерабатывающей промышленности / Автореф. дисс. на соиск. учен. степ. докт. биол. наук. Алматы, 2010. – 43 с.

Solomon, E.B. Transmission of *Escherichia coli* O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization / E.B. Solomon, S. Yaron, K.R. Matthews // Appl. Environ. Microbiol., 2002. – Vol. 68. – P. 397–400.