УДК 606

БИОТЕХНОЛОГИЯ ВЯЛЕНИЯ МЯСА С ПРИМЕНЕНИЕМ КОМПЛЕКСА ЭНЗИМОВ

И.С. Полянская, Г.Н. Забегалова, Н.А. Шелыгин, Ф.А. Пустовойтенко, Т.Ю. Бурмагина

ФГБОУ ВО «Вологодская молочнохозяйственная академия», Вологда, Россия

Нарушение питание провоцирует 30–50 % всех неинфекционных заболеваний, включая сердечно-сосудистые, ожирение, сахарный диабет, остеопороз, подагру, онкологические заболевания. По некоторым ведущим заболеваниям (инфаркты миокарда, инсульты и диабеты) здоровое питание может предотвратить 80 % случаев. Применение биотехнологий вяления мяса являются альтернативой вяленых сырокопченых колбас и находят всё большее применение, как способ разработки и производства экологичных мясных продуктов длительного хранения без использования нитратов, фосфатов, коптильных препаратов и с пониженным содержанием натрия. В представленном исследовании вкупе с вышеперечисленными составляющими экологии биотехнологического процесса вяления мяса использовались протеолитические энзимы и пробиотические микроорганизмы с ранее изученным нами [1] метабиотическим антимикробным действием. Таким образом, комплекс применяемых энзимов включал в себя как очищенный микробный фермент (протеаза бактериальная щелочная «Протозим»), так и ферменты молочнокислых микроорганизмов бактериального препарата.

Вяленым, в отличие от сушёного, называется продукт, который проходит стадию ферментации, одновременно с холодной сушкой. Если сушить при высокой температуре, естественные ферменты инактивируются, такой продукт является сушёным, а не вяленым. Известен способ производства вяленого мяса [2], включающий подготовку сырья, посол, сушку и упаковку, при этом посол кусочков мяса производят путем перемешивания с поваренной солью, выдерживая при температуре 2–4 °C в течение 12–24 часов, дополнительно выдерживают мясное сырье в течение 5 минут в растворе яблочного уксуса, затем дают стечь жидкости и на поверхность мяса наносят специи, раскладывают мясо на специальные решетки и сушат в течение 36–72 часов.

В представленном здесь исследовании посол, одновременно с ферментацией производили в 10~% рассоле с пониженным содержанием натрия (соли «Валитек»), содержащей 3~% фермента и 5~% активизированного в обезжиренном молоке БК-Углич-АВ, содержащего штамм Lactobacillus acidophilus 22_2 w в течение 2 часов при температуре $37 \pm 1~\%$ С. Затем ферментированные кусочки мяса без жидкости укладывали на решётки сушилки и сушили при 50 затем при 75~1 час, затем снова при 50, суммарное время сушки 8 часов. В контрольных образцах посол проводили в 10~% рассоле с пониженным содержанием натрия (соли «Валитек»), без добавления ферментов, микроорганизмов. Таким образом, совмещены лучшие стороны технологии вяления (получение насыщенного вкуса и запаха) и сушки (инактивация микроорганизмов, ускорение технологического процесса). Потребительская оценка (n=15) показала, что суммарный балл (вкус, цвет, запах, консистенция) увеличилась с 4,3 до 4,7 баллов, при этом наибольшее увеличение получил показатель вкус.

По результатам исследования аминокислотного состава опытных образцов, по сравнению с контрольными, как общий аминокислотный состав. так и свободные аминокислоты в опытном образце выше (содержание аминокислот в образцах естественной влажности, а не на сухую массу), см. Анализ образцов выполнен в лаборатории биоэкономики и устойчивого развития в соответствии Вологодского научного центра РАН с методикой, изложенной в ГОСТ 34132-2017. ВЭЖХ анализ проведен на системе Shimadzu Prominence LC-20 (Япония). Пробоподготовка была выполнена без стадии окисления. Кислотный гидролиз проведен соляной кислотой в концентрации 6 Моль/л в сушильном шкафу при температуре 110 °C в течение 24 часов. Далее пробы были нейтрализованы гидроксидом натрия (7.5 Моль/л), pH проб был установлен на $2.20 (\pm 0.05)$ с помощью Дополнительно проведено определение содержания свободных аминокислот рН-метра. в предоставленных образцах (аминокислоты извлечены органическим растворителем, до проведения гидролиза белковой фракции). Результат получен в мкмМоль/мл содержания аминокислот в пробе и приведен к содержанию в граммах на 1000 граммов исходного образца. Данные получены при обработке хроматограмм в программе Shimadzu LabSolution и пересчитаны в программе MS Excel. Исходя из сравнительного анализа аминокислотного состава контрольных и опытных образцов мяса количество свободных аминокислот увеличилось в 1,68 раз, что благоприятно отразилось на потребительской оценке. Увеличение общего количества аминокислот связано с использованием в опытной биотехнологии восстановленного сухого обезжиренного молока для активизации бактериального концентрата.

№1, 2022

Ценность белка для организма человека определена двумя основными параметрами: его сбалансированностью по содержанию незаменимых аминокислот и отношению к белковому эталону [3]. Кроме того, важными показателями биологической ценности продукта являются КСАС, КРАС, ИНАК и показатель сопоставимой избыточности, см. табл. 2.

Аминокислоты	Содержание аминокислот, мг в 1 г белка		
	шкала ФАО/ВОЗ [4]	контроль	опыт
Валин	40	16,3018	19,2088
Изолейцин	30	15,5775	19,0611
Лейцин	61	25,4890	32,6542
Лизин	48	31,6529	38,1407
Метионин и цистеин	23	7,3261	9,6550
Треонин	25	12,9019	15,9261
Гистидин	16	8,5438	13,0709
Фенилаланин и тирозин	41	18,1603	25,5705

Таблица 1 – Общее содержание незаменимых аминокислот, мг / 1 г белка

Рассчитанные значения показателей (таблица 2) свидетельствуют о высокой сбалансированности белка опытного образца по отношению к контрольному образцу продукта. Так КСАС разработанного продукта выше на 3 %, а КРАС ниже на 6 %. Кроме того, в опытном образце показатель сопоставимой избыточности (б) ниже на 10 %, по сравнению с контролем. Это означает, что незаменимые аминокислоты опытного образца продукта по сравнению с контролем в большей степени будут использоваться (усваиваться) организмом в ходе метаболических процессов. Вероятно, снижение данного показателя связано с воздействием фермента на белки мяса — в разработанном продукте, которое повышает биодоступность незаменимых аминокислот. Количество незаменимых аминокислот в опытном образце выше на 27,7 %, чем в контроле, об этом свидетельствует показатель ИНАК.

В дополнительных исследованиях, проведённых нами, аналогичной ферментаци перед вялением подвергали куриное мясо, говядину и рыбу (треска). В целом, можно отметить, что для разного вида мяса нельзя использовать одинаковые режимы ферментации и сушки, но во всех случаях получились приемлемые органолептические потребительские оценки, при этом готовый продукт содержал пониженное содержание натрия и не содержат внесенных фосфатов и нитратов.

Таблица 2 – Показатели биологической ценности продукта

Показатель	контроль	опыт
Коэффициент сбалансированности	0,67	0,69
аминокислотного состава		
Коэффициент разбалансированности	0,33	0,31
аминокислотного состава		
Показатель сопоставимой избыточности	142,82	128,80
Индекс незаменимых аминокислот	0,47	0,60

Таким образом, направление дальнейшей разработки и производства вяленных мясных продуктов с предварительной ферментацией комплексом энзимов быть может отнесено к перспективным, а наряду с режимами ферментации и сушки, биотехнологии совершенствование

может включать подбор метабиотических культур, благотворно влияющих на здоровье и увеличивающих гарантированных срок хранения без антибиотиков и консервантов.

Литература

- 1. Стоянова Л.Г. Метабиотические свойства штаммов lactobacillus acidophilus, входящих в комплексные закваски для производства пробиотических молочных продуктов / Л.Г. Стоянова, С.Д. Дбар, И.С. Полянская // Биотехнология. 2022. № 1. 1
 - 2. Способ изготовления вяленых мясных изделий. Патент RU 2238009C2, A23L1/314 A23L1/31 A23B4/03, 2004.
- 3. Лисин П.А. Методология оценки сбалансированности аминокислотного состава многокомпонентных пищевых продуктов / П.А. Лисин, О.Н. Мусина, И.В. Кистер, Н.Л. Чернопольская // Вестник ОмГАУ. 2013. № 3 (11). URL: https://cyberleninka.ru/article/n/metodologiya-otsenki-sbalansirovannosti-aminokislotnogo-sostava-mnogokomponentnyh-pischevyh-produktov: (дата обращения 10.07. 2022 г.).
- 4. Consultation F.E. Dietary protein quality evaluation in human nutrition. FAO Food and Nutrition Paper. 2013. № 1 P. 66.URL:https://www.researchgate.net/publication / 259554481
- 5. The 2013_FAO_report_on_dietary_protein_quality_evaluation_in_human_nutrition_Recommendations_and_implications (дата обращения 10.07. 2022 г.).