УДК 581.143

ПОЛУЧЕНИЕ КАЛЛУСНОЙ ТКАНИ ASTRAGALUS LEHMANNIANUS, ПРОДУЦЕНТА ЦИКЛОАРТАНОВЫХ ГЛИКОЗИДОВ

Р.П. Закирова, М.А. Агзамова, Э.А. Эшбакова

Институт химии растительных веществ им. акад. С.Ю. Юнусова АН РУз, г. Ташкент, Республика Узбекистан

Высшие растения являются источником биологически активных соединений, которые широко используются в фармакологии, парфюмерии и пищевой промышленности. Бесконтрольное использование растительного сырья привело к стремительному сокращению их естественных запасов. Многие растения, представляющие практический интерес относятся к эндемичным или редким видам.

Род Astragalus L. семейства Fabaceae – крупнейший род цветковых растений, насчитывающий более 2500 видов мировой флоры. На территории Республики Узбекистан произрастает 254 вида этого растения [1]. Растения этого рода являются источниками циклоартановых соединений. Вещества обладают широким спектром физиологической активности [2, 3].

Astragalus lehmannianus Bunge (сем. Leguminosae) — многолетнее травянистое растение, произрастает на закрепленных песках на территории Каракалпакии на северо-западе Республики Узбекистан. Из надземной части растения изолировали циклоартановые соединения, названные циклолехманозидом С и циклолехманозидом А [4, 5].

В качестве источника биологически активных веществ перспективным является метод культивирования растительных клеток в условиях *in vitro*. Метод позволяет изучать физиологические и биохимические процессы, характерные для данного вида и органа растения, исследовать специфичность их гормональной регуляции.

Целью настоящей работы было разработать условия каллусообразования pacтения Astragalus lehmannianus и изучение его химического состава.

Растительный материал был собран в Каракалпакии вблизи г. Нукус в июле 2016 г.

Семена A. lehmannianus обрабатывали 70 % этанолом 3–5 сек., затем помещали в раствор 0,1 % диоцида на 15–20 минут, после чего промывали стерильной дистиллированной водой 4–5 раз, после чего высаживали их на питательную среду Мурасиге и Скуга с добавлением сахарозы 30 г./л, мезо-инозита 100 мг/л, тиамина HC1-0.4 мг/л. агар-агара 0,75 %, без внесения регуляторов роста [6].

Семядоли и гипокотиль проростков разделяли на небольшие фрагменты и помещали на питательную среду. С целью индукции и поддержания каллусогенеза экспланты культивировали на питательной среде с добавлением ауксинов — α -нафтилуксусная кислота (НУК) и 2,4—дихлорфноксиуксусная кислота (2,4—Д) в концентрации 0,5 мг/л и цитокининов 6—бензиламинопурина (БАП) и 6-фурфуриламинопурина (кинетин) в 0,2 мг/л дозе.

Было выявлено, что формирование каллусов наблюдалось на всех вариантах, но более активно проходило на средах, содержащих 2,4–Д. В сочетании с кинетином частота каллусообразования для семядолей составляла 33,3 %, с БАП – 24,9 %, для гипокотилей, соответственно 26,6 % и 21,2 % (табл. 1).

Таблица 1. Влияние регуляторов роста на частоту каллусообразования Astragalus lehmannianus

Исходная	Тип и концентрация фитогормонов, мг/л				Частота
часть проростка	2,4-Д	НУК	Кинетин	БАП	каллусообразова- ния, %
Семядоли	0,5	-	0,2	-	30,3
	0,5	-	-	0,2	24,9
	-	0,5	0,2	-	2,5
	-	0,5	-	0,2	1,7
Гипокотиль	0,5	-	0,2	-	26,6
	0,5	-	-	0,2	21,2
	-	0,5	0,2	-	2,2
	=	0,5	-	0,2	1,9

№3 (30), 2019

На средах с НУК этот процесс проходил значительно слабее. Процент каллусообразования для семядольных эксплантов при добавлении кинетина составляло 2,5 %, при внесение БАП – 1,7 %, для гипокотилей, соответственно 2,2 % и 1,9 %. Клеточные культуры, полученные из двух типов эксплантов, практически не отличалась по морфологическим характеристикам: медленный рост каллуса, плотная структура, светло-зеленый цвет. При дальнейшем пассировании на свежие среды каллусы сохраняли невысокую скорость роста и плотную структуру, а к концу 4 недели приобретали красноватый цвет, говорящий о продуцировании клетками полифенольных соединений. Такой же процесс, но более интенсивно наблюдался при культивировании культуры тканей эндемичного растения Astragalus babatagi. Каллусы выделяли в питательную среду продукты фенольного окисления, что приводило к их гибели [7].

В настоящее время проводится сравнительный химический анализ генеративного растения и каллусных тканей *А. lehmannianus* методом ВЭЖХ. Первичные данные по качественному составу вторичных соединений показали, что биосинтез основных тритерпеновых соединений в условиях in vitro сохраняется.

ЛИТЕРАТУРА

Камелин Р.В. *Astragalus* L. – Астрагал. Определитель растений Средней Азии. Ташкент: Изд-во «Фан» – УзССР. 1981. Т. 6. 211 с.

Царук А.В., Искендеров Д.А., Агзамова М.А., Хушбактова З.А., Сыров В.Н., Исаев М.И. Выделение и изучение влияния циклоартановых гликозидов циклоорбикозида G и циклосиверсиозида A на метаболические процессы в миокарде крыс. Химико-фармацевтический журнал. Москва. 2010.V44. № 1. С. 12–15.

Хушматов Ш.С., Баратов К.А., Агзамова М.А., Иногамов У.К., Исаев И.М. The Cardiotonic Effects of Cycloartane Glycoside – Astragaloside VII. European Journal of Medicine. 2016. Series B.V.5. Is.1. P.18–25.

Жанибеков А.А., Наубеев Т.Х., Утениязов К.К., Бобакулов Х.М., Абдуллаев Н.Д. Тритерпеновые гликозиды *Astragalus* и их генины. Строение циклолехманозида С из *Astragalus lehmannianus*. Химия природных соединий. 2013. № 3, С405–406.

Жанибеков А.А., Наубеев Т.Х., Утениязов К.К., Бобакулов Х.М., Абдуллаев Н.Д. Строение циклехманозида А из *Astragalus lehmannianus*. Тезисы докладов Международного Симпозиума по химии природных соединений, 21–22 Ноябрь 2013, Ташкент-Бухара, Узбекистан.

Murashige T. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15(13): 473–497.

Закирова Р.П., Агзамова М.А., Исав И.М. Вестник Северо-Восточного федерального университета им. М.К. Аммосова. 2018, № 2 (68), с. 26–34.