№3 (30), 2019

УДК 578.5

МЕТОДЫ БИОИНФОРМАТИЧЕСКОГО АНАЛИЗА ВИРУСНЫХ МЕТАГЕНОМОВ КИШЕЧНИКА ЧЕЛОВЕКА

Е.В. Старикова, К.М. Климина, А.А. Хурумова, Д.С. Ульянов, Е.Н. Ильина

ФНКЦ ФХМ ФМБА России, Москва, Россия

Появление методов метагеномного секвенирования сделало возможными анализ и аннотацию некультивируемых микроорганизмов — так называемой "тёмной микробной материи", а также ранее не известных вирусов. С помощью методов вирусной метагеномики был открыт известный бактериофаг CrAssphage [1], присутствующий в кишечнике большинства людей из различных стран и континентов. Микробиом кишечника человека является одной из наиболее разнообразных по видовому составу микроорганизмов экологических ниш, при этом многие присутствующие в нём виды остаются неизученными.

Классические референсные подходы не позволяют в полной мере оценить видовое разнообразие вирусов, поскольку известные вирусные последовательности составляют, по разным оценкам, от 5 до 20 % секвенируемых вирусных метагеномов. Необходимо расширение используемых биоинформатических инструментов для аннотации новых вирусных последовательностей и лучшего понимания взаимосвязей между вирусами и бактериями в кишечном микробиоме.

Целью нашей работы являлось получение вирусных метагеномов здоровых добровольцев в двух временных точках и биоинформатический анализ полученных вирусных последовательностей.

Из образцов кала здоровых добровольцев, собранных в двух временных точках, была получена фракция вирусоподобных частиц (ВПЧ) путём фильтрации и ультрацентрифугирования в градиенте CsCl и последующей обработкой ДНКазой. Затем было проведено секвенирование тотальной ДНК очищенной фракции вирусоподобных частиц на секвенаторе Illumina HiSeq 2500.

Полученные прочтения подвергались предобработке и фильтрации. Прошедшие фильтрацию прочтения аннотировались программой для таксономической аннотации метагеномов KRAKEN [2], а также картировались на базу известных бактериофагов, а также на базу метагеномных вирусных последовательностей IMG/VR. В результате данного анализа было показано наличие ряда известных фагов бактерий родов Escherichia, Cronobacter и Bacteroides, а также неаннотированных вирусных последовательностей бактерий родов Parabacteroides, Bacteroides, Faecalibacterium и др. Прошедшие фильтрацию прочтения также собирались в контиги de novo с помощью метагеномных сборщиков megahit [3] и metaspades [4]. Из собранных контигов отфильтровывались бактериальные контаминанты на основании определения последовательностей 16S.

В результате сборки были получены предположительные вирусные контиги (как линейные, так и циклические) длиной до 109 Кб. Полученные вирусные контиги аннотировались инструментом САТ/ВАТ. Белковые последовательности, предсказанные для данных контигов, аннотировались с помощью скрытых марковских моделей (НММ) из базы ортологичных вирусных генов pVOG [5], а также с помощью скрытых марковских моделей, сконструированных нами для белков вирусных семейств, не представленных в базе pVOG.

Для выявления предположительных бактерий-хозяев нами было проведено соответствие вирусных контигов спейсерам из CRISPR-систем известных бактерий, в результате чего было установлено полное соответствие ряда последоветельностей спейсерам из геномов бактерий родов Bifidobacterium, Roseburia, Streptococcus, Coprococcus и Acinetobacter.

Дальнейшее изучение вирусных метагеномов кишечника человека и расширение существующих биоинформатических баз (в том числе баз метагеномных вирусных последовательностей, скрытых марковских моделей вирусных белков, баз спейсеров CRISPR-систем) поспособствует лучшему пониманию взаимосвязей между вирусами и бактериями в кишечнике человека.

Работа была проведена при поддержке гранта РФФИ № 19-34-80033

ЛИТЕРАТУРА

Dutilh B.E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes //Nature communications. 2014. T. 5. C. 4498

Wood D.E., Salzberg S.L. Kraken: ultrafast metagenomic sequence classification using exact alignments //Genome biology. 2014. T. 15. №. 3. C. R46.

Li D. et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph // Bioinformatics. 2015. T. 31. №. 10. C. 1674–1676.

Nurk S. et al. metaSPAdes: a new versatile metagenomic assembler //Genome research. 2017. T. 27. №. 5. C. 824–834. Grazziotin A.L., Koonin E.V., Kristensen D.M. Prokaryotic virus orthologous groups (pVOGs): a resource for comparative genomics and protein family annotation //Nucleic acids research. 2016. C. gkw975.