УДК 606:577.151.5

ИММОБИЛИЗОВАННЫЕ В СИЛИКАГЕЛИ ЖИВЫЕ КЛЕТКИ: МЕТОДИЧЕСКИЕ АСПЕКТЫ ПОЛУЧЕНИЯ И БИОТЕХНОЛОГИЧЕСКИЙ ПОТЕНЦИАЛ

О.Н. Понаморева, В.А. Алферов

Тульский государственный университет, Тула, Россия

ВВЕДЕНИЕ

В последние годы возрастает интерес к разработке новых функциональных материалов с использованием методов золь-гель химии, которая является характерной особенностью соединений кремния и некоторых других элементов этой группы периодической системы [1–3]. Преимущества золь-гель технологий заключаются в возможности получения необычной морфологии микрои наноразмерных структур материалов, использовании экологически безвредных исходных веществ (предшественников, прекурсоров), мягкие условия синтеза и, в целом, экологически чистые технологии получения инертных и биосовместимых материалов [4]. При использовании в золь-гель синтезе дополнительных органических соединений и / или алкилзамещенных силановых прекурсоров образуются гибридные органо-неорганические материалы (ОРМОСИЛ, ормосилы) [5–6]. Сочетание силикатных материалов с биологическими компонентами привело к созданию биогибридных функциональных материалов, которые находят применение, прежде всего, в биотехнологии для разработки биокатализаторов, биореакторов, биофильтров, биосенсоров и др., в биомедицине и тканевой инженерии и других областях деятельности человека [7–9].

С развитием методов нанобиотехнологий появилось новое направление исследований по получению ≪живых» гибридных материалов, в которых в силикагели или ормосилы иммобилизованы живые клетки [10-11]. Важным аспектом в этих исследованиях является направленный синтез структур типа «клетка в оболочке», которые напоминают некоторые природные одноклеточные организмы – радиолярии и диатомовые водоросли, эволюционировавшие таким образом, чтобы сохранить свои виды от воздействия неблагоприятных жестких условий и защитить свой генетический материал с помощью твердой оболочки из кремнезема [12-13]. В течение последнего десятилетия самыми распространенными исследованиями в химии материалов является изучение новых стратегий самосборки молекул для формирования искусственной оболочки вокруг клеток, т. е. создание биомиметических структур, подобных клеткам диатомей, или, так называемых, «искусственных спор», которые, как и природные споры микроорганизмов, обладают особой стабильностью и защитой против вредных факторов (рис. 1) [14].

Рисунок 1. «Искусственные споры»: клетка заключена в тонкую прочную искусственную оболочку

B этом обзоре мы постарались представить ключевые моменты в развитии методических подходов для получения структур «клетка в оболочке» с использованием золь-гель химии кремния, что стало возможно с развитием методов нанабиотехнологий.

МЕХАНИЗМ И УСЛОВИЯ ФОРМИРОВАНИЯ СИЛИКАТНЫХ ЗОЛЬ-ГЕЛЬ МАТЕРИАЛОВ

Формирование золь-гель матриц на основе эфиров кремниевой кислоты включает процессы гидролиза исходных предшественников или прекурсоров (как правило, алкоксисиланов) и конденсации гидролизованных соединений – кремниевой кислоты или ее производных. На свойства образующегося геля влияют предшественники (алкоксисиланы и алкилалкоксисиланы), скорость гидролиза которых зависит от структуры и числа алкокси- и алкильных заместителей. В первой реакции, один или два силановых прекурсора (например, тетраметоксисилан Si(OCH₃)₄ (TMOC) или метилтриметоксисилан CH₃ Si(OCH₃)₃ (MTMC)), гидролизуются в присутствии воды, в результате происходит формирование силанольных (Si-OH) групп (рис. 2 (1) и (2)) [15]. Поликонденсация гидролизованных производных приводит к образованию оксоалкоксопроизводных (рис. 2 (3)).

(1) RO
$$\longrightarrow$$
 Si \longrightarrow OR + H₂O \longrightarrow kat RO \longrightarrow Si \longrightarrow OR + ROH RO \longrightarrow RO

Рисунок 2. Схема реакций гидролиза и конденсации в ходе золь-гель синтеза силикагелей (ормосилов) из алкоксисиланов и алкилалкоксисиланов.

В результате получают высокодисперсный коллоидный раствор — золь. Увеличение концентрации дисперсной фазы приводит к появлению коагуляционых контактов между частицами и началу структурирования — гелеобразования (вторая стадия золь-гель процесса). В присутствии других молекул или частицы происходит их встраивание в структуру геля (рис. 3) [16].

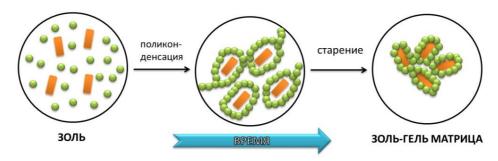


Рисунок 2. Схема формирования и уплотнения геля в присутствии биоматериала (биомолекул или клеток)

Характеристики отдельных золь-гель процессов связаны с рядом факторов, которые оказывают воздействие на скорость реакций гидролиза и конденсации (рН, температура и время реакции, концентрация реагентов, природа и концентрация катализаторов, H₂ O/Si молярное отношение). Таким образом, контролируя эти факторы, можно изменять структуру и свойства золь-гель производных неорганических сетей в широком диапазоне. При проведении реакции гидролиза в кислых условиях образуются линейные полимеры, что приводит к формированию кристаллического геля, а в присутствии основных катализаторов – разветвленные кластеры или коллоидные гели [17].

Для повышения стабильности структур, регулирования реологических свойств и управления процессами структурообразования на прочность контактов воздействуют путем создания в растворе пространственной структуры высокомолекулярного органического полимера (полиэтиленгликоля (ПЭГ), поливинилового спирта (ПВС), поливинилпирролидона (ПВП) и др.) [18]. Такие системы обладают высокой пластичностью и практически неограниченной седиментационной устойчивостью [19]. Гидрофильные полимеры выступают в роли структурообразующих агентов (СА), как показано на рисунке 3 [20].

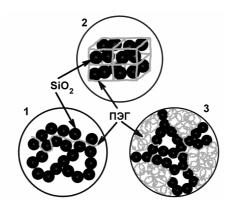


Рисунок 3. Схематическое представление системы SiO2-ПЭГ, где черные сферы частицы диоксида кремния, серые кривые – макромолекулы ПЭГ 1 – низкомолекулярные ПЭГ; 2 – образование флуктуационной сетки; 3 – кластерная структура

МЕТОДИЧЕСКИЕ ПОДХОДЫ ДЛЯ ИММОБИЛИЗАЦИИ МИКРООРГАНИЗМОВ В СИЛИКАГЕЛИ

Попытки иммобилизовать живые клетки в силикатные материалы, чтобы имитировать процессы окаменения, предпринимались в семидесятые годы прошлого века неоднократно. Однако первое сообщение по целенаправленной иммобилизации клеток в золь-гель материалы было сделано только в конце 80-х годов [21]. В этой работе исследовалась инкапсуляция дрожжей Saccharomyces cerevisiae в силикагель. В выводах указывались основные проблемы, с которыми столкнулись исследователи: негативное влияние этанола, образующегося в ходе гидролиза предшественника (тетраэтоксисилана, ТЭОС) и добавляемого в реакционную смесь, и уменьшения внутренней поверхности геля на жизнеспособность клеток, особенно в ходе «старения» геля, что отражалось на долговременном сохранении жизнеспособности микроорганизмов. Следует отметить, что выбор спиртовых дрожжей был неслучайным, поскольку, в целом, решалась проблема жизнеспособности микроорганизмов в присутствии этанола. После более чем двадцатилетних исследований многие обозначенные выше проблемы в значительной степени разрешены.

Так, для улучшения механических свойств силикатной матрицы предложено использовать наряду с алкосисиланами органомодифицированные силановые прекурсоры, так называемые, гидрофобные добавки, - метилтриэтоксисилан и диметилдиэтоксисилан [22]. Применение в ходе иммобилизации клеток дополнительно органических и природных соединений (например, глицерина), гидрофильных полимеров позволило создать биосовместимое окружение для живых клеток [23]. Гидрофильные полимеры участвуют в формировании структуры геля в целом, т. е. выступают в качестве СА. Параллельно были предприняты усилия для расширения разнообразия живых организмов, которые могут быть захвачены в силикатные золь-гель материалы, включая почти все типы клеток от прокариот (бактерии, цианобактерии, но не архебактерии) до эукариот (грибов, растительных и животных клеток) [10]. Так, в работе [24] иммобилизацию бактерий Escherichia coli проводили в присутствии глицерина, который, как полагают авторы, формировал гидрофильную оболочку вокруг бактерий, препятствующую взаимодействию кремниевых кислот с поверхностью клетки. Развитие этого направления можно проиллюстрировать исследованиями по иммобилизации бактерий (анаэробных и участвующих в спиртовом брожении) по технологии, как ее назвали авторы, «рыбка в сетях». В составе композиции кроме ТЭОС входил блок-сополимер и высокомолекулярный ПЭГ, как СА [25].

БИОСОВМЕСТИМЫЙ (БЕЗАЛКОГОЛЬНЫЙ) ЗОЛЬ-ГЕЛЬ ПУТЬ ДЛЯ ИНКАПСУЛИРОВАНИЯ ЖИВЫХ БАКТЕРИЙ В СИЛИКАГЕЛИ

Для предотвращения контакта живых клеток со спиртом разработано несколько протоколов иммобилизации биоматериала, одним из которых является двухшаговый путь иммобилизации клеток в силикагели и ормосилы [26]. Первоначально гидролиз алкоксисиланов в кислой среде, реакционную смесь разбавляют в два раза водой и упаривают спирт на роторном испарителе.

К образовавшемуся золю добавляют водную суспензию клеток, при этом увеличивается рН конечной системы и запускается процесс конденсации. К суспензии клеток или в реакционную смесь прекурсоров добавляли стабилизирующие структуру клеток или геля соединения, такие как ПЭГ. В ходе иммобилизации генно-инженерных штаммов со встроенным геном природной люминесценции продемонстрировано, что природа диоксида кремния, процедура синтеза и добавление различных веществ модулируют разный по величине клеточный стресс (жизнеспособность) и, следовательно, «живые» гибридные материалы, синтезированные в правильно подобранных условиях, могут более эффективно функционировать, что важно при разработке биореакторов.

ПОЛИОЛСОДЕРЖАЩИЕ ПРЕДШЕСТВЕННИКИ

Другим подходом для снижения токсического воздействия на клетки спиртов, выделяющихся при гидролизе алкоскисиланов, может стать использование полиолмодифицированных силанов в качестве предшественников в синтезе силикагеля [27]. В работе [28] показано, что цианобактерии можно обездвижить в силикагелях, полученных из предшественника алкоксида, который высвобождает этиленгликоль при гидролизе и полимеризации. Этот путь намного более биосовместим по сравнению с использованием тетраметиоксиили тератраэтоксисиланов. выживаемость клеток остается довольно слабой, и практически полностью исчезает через 9 недель при использовании наилучшего состава геля. Авторы считают, что необходимы глубокие исследования, возможности проектировать фотобиореакторы на основе иммобилизованных в силикагели на основе полиолмодифицированных предшественников.

ТЕХНОЛОГИЯ БИОСИЛ

Технология Биосил (Biosil) основана на формировании слоя золь-гель кремнезема на поверхности целых клеток, который образуется из предшественников кремнезема в газовой фазе [29]. Суть метода заключается в том, что силановые предшественники (ТЭОС, МТЭС и др.) смешивают в атмосфере азота, нагревают до 70-900 С и пропускают поток инертного газа. Насыщенный алкоксидом газ контактирует с клетками таким образом, что золь-гель-предшественники контактируют с водой, присутствующей на поверхности клетки, а также с реакционноспособными группами макромолекул, составляющих стенку или клеточную мембрану. Золь-гель оболочка образуется непосредственно на поверхности клетки. Биосил-технологию применили для создания «искусственной поджелудочной железы» [30]. Островки Лангерганса панкреатической железы крыс после обработки газообразными силановыми производными сохраняли первоначальные размеры и сохраняли жизнеспособность и функции. Силикатный материал равномерно распределялся по поверхности островка, и толщина слоя составляла 0,1-2,0 мкм. Клинический потенциал инкапсулированных клеток был продемонстрирован на экспериментах in vivo путем трансплантации крысам с диабетом. После трансплантации наблюдалось длительное восстановление нормального уровня глюкозы.

ЛВУХСЛОЙНОЕ ИНКАПСУЛИРОВАНИЕ КЛЕТОК

Инкапсулированные в силикагели клетки не способны делиться, и это проблема. Для увеличения жизненного пространства для клеток разработана специальная процедура иммобилизации биоматериала в двухслойные матрицы, что позволяет осуществляться клеточной пролиферации в жидких полостях, созданных внутри кремниевой матрицы [31]. В этом случае клетки предварительно иммобилизуются в шариках Ca(II) – альгината, которые впоследствии захватываются силикатной матрицей. Иммобилизованные таким образом нитчатые грибы Stereum hirsutum применили для биоремедиации загрязненной воды. Полученное гибридное устройство проявляло хорошую физическую, химическую и биологическую стабильность и эффективно участвовало в разложении и удалении красителя малахитового зеленого, даже в растворах с высокой концентрацией красителя. Это явилось следствием регулируемого транспорта красителя через поры силикагеля и сохранения ферментов деградации красителя внутри гидрогеля. Авторы считают, что полученные результаты открывают возможность биоремедиации без внесения чужеродных микроорганизмов в окружающую среду и могут быть распространены на огромное разнообразие штаммов благодаря высокой биосовместимости такого способа иммобилизации. В последующих исследованиях было предложено разжижать альгинат после образования силикагеля, чтобы клетки оставались в макропространстве.

Эта процедура использовалась для инкапсулирования дрожжей (Sacharomyces cerevisiae) и бактерий (Escherichia coli и Bacillus subtilis) и более чувствительных растительных клеток, что позволило получить не только чрезвычайно высокую начальную жизнеспособность, но также и возможность пролиферации клеток внутри. Это особенно важно для разработки биореакторов, которые требуют высокой плотности клеток для биосинтеза белков [32]. Физиологии микроорганизмов, иммобилизованных в силикагели и другие неорганические полимеры, посвящена монография [33].

КЛЕТОЧНО-НАПРАВЛЕННАЯ СБОРКА БИО-НАНО-ИНТЕРФЕЙСОВ

Одним из самых известных методов синтеза сферических монодисперсных частиц кремнезема микронного размера является синтез Стробера (Stober), который проводится в присутствии основого катализатора NH4 ОН в присутствии амфифильных соединений [34]. В условия синтеза Стобера постоянно вносились многочисленные модификации с целью получения монодисперсных частиц упорядоченных наноразмерных кремнезема. Синтез Стробера использовали для инкапсулирования микроорганизмов (Saccharomyces cerevisiae и бактериальных клеточных линий). [35]. Однако, для управления образованием биосовместимых, однородных наноструктур на основе диоксида кремния вместо синтетических поверхностно-активных веществ использовали амфифильные фосфолипиды. Оказалось, что на поверхности клеток образовывались многослойные фосфолипидные везикулы, которые взаимодействовали с матрицей силикагеля и помогали уменьшить стресс при сушке. Поверхности клеток являются доступными и могут быть использованы для локализации дополнительных белков, плазмид и нанокристаллов. Авторы продемонстрировали увеличенную жизнеспособность клеток в сочетании с интенсивной экспрессией репортерного белка. Более того, в ходе липид-ориентированной сборки силикагеля из предшественников кремниевой кислоты в присутствии живых клеток, клетки влияли на процесс, окружая себя жидким, многослойным липидным пузырьком, который последовательно взаимодействует с упорядоченной кремнеземной мезофазой. Этот био-нано-интерфейс уникален тем, что его однородная наноструктура предотвращает чрезмерное высыхание воды, поддерживая жизнеспособность клеток, и в то же время обеспечивает доступность поверхности клеток для небольших молекул. По сравнению с существующими схемами иммобилизации, такими как инкапсуляция в золь-гелевых матрицах, авторы показали, что этот процесс происходит в результате активного взаимодействия между живой клеткой и окружающей матрицей, которое они называли клеточно-направленной сборкой. Они предположили, что клеточнонаправленная сборка создает уникальную локализованную наноструктурированную микросреду, в которой устанавливаются и поддерживаются трехмерные химические градиенты. В последующих исследованиях этой научной группы [36–37] было обнаружено, что фосфолипиды с короткой цепью управляют образованием тонкопленочных кремнеземных мезофаз во время индуцированной испарением самосборки, и что введение клеток в реакционную систему изменяет путь самосборки. Клетки образуют упорядоченную липидную мембрану, которая образует взаимосвязанный интерфейс с кремнеземной мезофазой, которая уникальна тем, что она выдерживает высыхание, но при этом поддерживает доступ к молекулам, введенным в трехмерную матрицу кремнезема. Жизнеспособность клеток сохраняется в отсутствие буфера, что делает эти конструкции полезными в качестве автономных датчиков на основе клеток. В ответ на гиперосмотический стресс клетки высвобождают воду, создавая градиент рН, который поддерживается внутри наноструктурированного хозяина и служит для локализации липидов, белков, плазмид, липидизированных нанокристаллов и других компонентов на клеточной поверхности. Эта активная организация био-нано-интерфейса может быть достигнута во время струйной печати или избирательного смачивания - процессов, позволяющих структурировать клеточные массивы.

Недавно команда исследователей из той же лаборатории применила все три разработанных ранее способа инкапсуляции дрожжей в силикатные матрицы: клеточно-управляемая инкапсуляция в присутствии липидов; образование геля в присутствии глицерина; формирование матрица в газовых условиях в токе азота [38–39]. Эта работа представляет собой комбинацию эксперимента и анализа, направленную на проектирование и разработку процедур 3D-инкапсуляции, чтобы стимулировать и, возможно, контролировать четко определенные физиологические поведения живых клеток.

КРАТКИЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ НАШЕЙ НАУЧНОЙ ГРУППЫ ПО ИММОБИЛИЗАЦИИ МИКРООРГАНИЗМОВ В ЗОЛЬ-ГЕЛЬ МАТРИЦЫ СИЛИКАГЕЛЯ И ОРМОСИЛА

Исследования по иммобилизации микроорганизмов в силикагели с использованием методов золь-гель химии в нашем научном коллективе можно условно разделить на три направления: выявление параметров и условий золь-гель синтеза (рН, катализатор, предшественники силикагеля, соотношение реагентов, содержание гиброфобной добавки в виде алкилалкоксисиланов, время синтеза) на образование структуры типа «клетка в оболочке»; роль органических полимеров (ПЭГ с различными молекулярными массами и ПВС) и содержание гидрофобной добавки в виде алкилалкоксисиланов на формирование 3D структур ормосилов различного строения; выяснение роли различных микроорганизмов на формирование определенных структур «живых» гибридных материалов.

Мы показали, что в определенных условиях золь-гель синтеза каждая клетка дрожжей является центром формирования гибридной структуры и направляет образование оболочки силикагеля на своей поверхности, как в присутствии ПЭГ, так и в присутствии ПВС, но при определенном соотношении силановых прикурсоров (рис. 4) и типе гидрофобной добавки (метилтриэтоксисилане или диметилдиэтоксисилане [40–45].

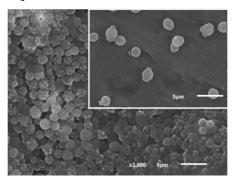


Рисунок 4. СЭМ изображение биогибридного материала на основе дрожжей Debaryomyces hansenii ВКМ Ү-2482, инкапсулированных в золь-гель матрицы ТЭОС и МТЭС (15:85 об.%) в присутствии ПВС20000

Нам впервые удалось зафиксировать процесс образования капсулы вокруг клеток дрожжей методом оптической микроскопии [41-43]. Более того, зафиксировали сжатие и восстановление размеров оттдельных клеток дрожжей, что можно объяснить реакцией живой клетки на оснмотический стресс. Это согласуется с последними исследованиями, подробно описанными в работах [37, 39].

Структура гибридного материала зависит от размеров молекул гидрофильных полимеров. В присутствии ПЭГ с молекулярными массами 1000 и 2000 Да наблюдается образование преимущественно монолитной структуры гибридного материала, при использовании ПЭГ с более высокими молекулярными массами наблюдаются отчетливые фрактальные структуры с размером частиц от 0,7 до 2 мкм [44]. В присутствии ПВС также формируются структуры «клетка в оболочке», но материал в целом представляет более гибкий и позволяет формировать пленки на твердой поверхности [46]. Это обусловлено способностью ПВС образовывать водородные связи в процессе формирования геля.

Дыхательная активность инкапсулированных дрожжей в присутствии солей тяжелых металлов и после УФ-облучения не изменялась, в то время как свободные дрожжи потеряли жизнеспособность. Эти результаты указывают на беспрецедентные защитные функции кремнийорганической оболочки вокруг клеток дрожжей, что следует учитывать при разработке новых биотехнологий [41, 42, 46–48]. Биогибридные материалы можно хранить в течении года при температуре -18° C без потери активности.

Гибриды со структурой – клетки метилотрофных дрожжей Ogataea polymorpha BKM Y-2559 в органосиликатной оболочке - могут применяться для разработки биосенсоров для мониторинга степени очистки метанолсодержащих стоков и биофильтров для очистки сильнокислых сточных вод производств метанола [42, 46, 47]. Инкапсулированные в органосиликатную матрицу дрожжи Debaryamyces hansenii использованы при разработке БПК-биосенсора [48–50].

Разработанный БПК-биосенсор является перспективным инструментом для мониторинга загрязнений сточных вод. Инкапсулированные в золь-гель матрицу дрожжи Debaryamyces hansenii могут составить основу биофильтра для очистки вод от органических загрязнений. Степень очистки достигает 100 % после 2 часов работы.

Кратко результаты исследований по этому направлению, выполненные в Тульском государственном университете, суммированы в мини-обзорах [51, 52]. В заключение отметим, что на свойства биогибридного материала на границе раздела био-нано значительно влияет биологическое поведение клеток, а не только химия силикагеля. Эта способность может представлять интерес как новый мощный метод для изучения сложного клеточного поведения, а также для разработки биоэлектроники и биосенсоров на основе клеток.

ЛИТЕРАТУРА

- 1. Danks, A. E., S. R. Hall and Z. Schnepp. *The evolution of 'sol-gel' chemistry as a technique for materials synthesis*. Materials Horizons. 2016. **3**(2): 91-112.
- 2. Kumar, S., M. M. Malik and R. Purohit. *Synthesis methods of mesoporous silica materials*. Materials Today: Proceedings. 2017. **4**(2): 350-357.
- 3. Narayan, R., U. Y. Nayak, A. M. Raichur and S. Garg. *Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances*. 2018. Pharmaceutics. 10(3): 118.
- 4. Avnir, D., T. Coradin, O. Lev and J. Livage. *Recent bio-applications of sol-gel materials*. Journal of Materials Chemistry. 2006. **16**(11): 1013-1030.
 - 5. Gupta, R. and A. Kumar. *Molecular imprinting in sol-gel matrix*. Biotechnol Adv. 2008. **26**(6): 533-547.
- 6. Boury, B. and R. J. P. Corriu. *Auto-organisation of hybrid organic-inorganic materials prepared by sol-gel chemistry*. Chemical Communications. 2002. (8): 795-802.
- 7. Depagne, C., C. Roux and T. Coradin. *How to design cell-based biosensors using the sol-gel process*. Anal Bioanal Chem. 2011. **400**(4): 965-976.
 - 8. Jones, J. R. Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia. 2013. 9(1): 4457-4486.
- 9. Bagheri, E., L. Ansari, K. Abnous, S. M. Taghdisi, F. Charbgoo, M. Ramezani and M. Alibolandi. *Silica based hybrid materials for drug delivery and bioimaging*. Journal of Controlled Release. 2018. **277**: 57-76.
- 10. Meunier, C. F., P. Dandoy and B. L. Su. *Encapsulation of cells within silica matrixes: Towards a new advance in the conception of living hybrid materials.* J Colloid Interface Sci. 2010. **342**(2): 211-224.
- 11. Blondeau, M. and T. Coradin. Living materials from sol-gel chemistry: current challenges and perspectives. Journal of Materials Chemistry. 2012. 22(42): 22335.
 - 12. Nassif, N. and J. Livage. From diatoms to silica-based biohybrids. Chem Soc Rev. 2011. 40(2): 849-859.
- 13. Park, J. H., D. Hong, J. Lee and I. S. Choi. *Cell-in-shell hybrids: chemical nanoencapsulation of individual cells*. Accounts of Chemical Research. 2016. **49**(5): 792-800.
- 14. Yang, S. H., D. Hong, J. Lee, E. H. Ko and I. S. Choi. *Artificial spores: cytocompatible encapsulation of individual living cells within thin, tough artificial shells.* Small. 2013. **9**(2): 178-186.
- 15. Brinker, C. J. and G. W. Scherer. *Sol-Gel Science. The Physics and Chemistry of Sol-Gel Process.*, Academic Press. 1990. 908 p.
- 16. Gupta, R. and N. K. Chaudhury. *Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects.* Biosens Bioelectron. 2007. **22**(11): 2387-2399.
- 17. Kupareva, A., P. Mäki-Arvela, H. Grénman, K. Eränen and D. Y. Murzin. *The base-catalyzed transformation of tetramethyldisiloxane: influence of reaction media.* Journal of Chemical Technology & Biotechnology. 2015. **90**(1): 34-43.
- 18. Landry C.J.. et al. *In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions.* Polymer (Guildf). 1992. **33**(7): 1496–1506.
- 19. Pandey, S. and S. B. Mishra. *Sol-gel derived organic-inorganic hybrid materials: synthesis, characterizations and applications*. Journal of Sol-Gel Science and Technology. 2011. **59**(1): 73-94.
- 20. Gorbunova, O. V., O. N. Baklanova, T. I. Gulyaeva, M. V. Trenikhin and V. A. Drozdov. *Poly(ethylene glycol)* as structure directing agent in sol–gel synthesis of amorphous silica. Microporous and Mesoporous Materials. 2014. **190**: 146-151.
- 21. Carturan G, Campostrini R, Diré S, Scardi V, De Alteriis E. *Inorganic gels for immobilization of biocatalysts: inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of SiO₂ gel deposited on glass sheets.* Journal of Molecular Catalysis. 1989. **57**(1):L13-L6.
- 22. Inama L, Diré S, Carturan G, Cavazza A. Entrapment of viable microorganisms by SiO2 sol-gel layers on glass surfaces: trapping, catalytic performance and immobilization durability of Saccharomyces cerevisiae. J Biotechnol. 1993. **30**(2):197-200.
- 23. Liu, L., L. Shang, S. Guo, D. Li, C. Liu, L. Qi and S. Dong. *Organic-inorganic hybrid material for the cells immobilization: long-term viability mechanism and application in BOD sensors*. Biosens Bioelectron. 2009. **25**(2): 523-526.

- 24. Nassif N, Bouvet O, Noelle Rager M, Roux C, Coradin T, Livage J. Living bacteria in silica gels. Nature materials. 2002. 1(1):42-4.
- 25. Niu X, Wang Z, Li Y, Zhao Z, Liu J, Jiang L, et al. "Fish-in-Net", a Novel Method for Cell Immobilization of *Zymomonas mobilis*. PloS one. 2013. **8**(11):e79569.
- 26. Ferrer ML, Yuste L, Rojo F, del Monte F. Biocompatible sol-gel route for encapsulation of living bacteria in organically modified silica matrixes. Chemistry of Materials. 2003. 15(19):3614-8.
- 27. Desimone MF, Alvarez GS, Foglia ML, Diaz LE. Development of sol-gel hybrid materials for whole cell immobilization. Recent Patents on Biotechnology. 2009. 3(1):55-60.
- 28. Meunier CF, Rooke JC, Leonard A, Xie H, Su B-L. Living hybrid materials capable of energy conversion and CO₂ assimilation. Chemical Communications. 2010. **46**(22):3843-59.
- 29. Boninsegna, S., P. Bosetti, G. Carturan, G. Dellagiacoma, R. Dal Monte and M. Rossi. Encapsulation of individual pancreatic islets by sol-gel SiO₂: A novel procedure for perspective cellular grafts. Journal of Biotechnology. 2003. 100(3): 277-286.
- 30. Carturan G, Dal Toso R, Boninsegna S, Dal Monte R. Encapsulation of functional cells by sol-gel silica: actual progress and perspectives for cell therapy. Journal of Materials Chemistry. 2004. **14**(14):2087-98.
- 31. Perullini M, Jobbágy M, Mouso N, Forchiassin F, Bilmes SA. Silica-alginate-fungi biocomposites for remediation of polluted water. Journal of Materials Chemistry. 2010. 20(31):6479-83.
- 32. Spedalieri, C., C. Sicard, M. Perullini, R. Brayner, T. Coradin, J. Livage, S. A. Bilmes and M. Jobbágy. Silica@proton-alginate microreactors: a versatile platform for cell encapsulation. Journal of Materials Chemistry B. 2015. **3**(16): 3189-3194.
- 33. Kuncová, G. and Trögl J. Physiology of microorganisms immobilized into inorganic polymers. Handbook of Inorganic Chemistry Research. D. A. Morrison, Nova Science Publishers. 2010. pp. 53-101.
- 34. Stober, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968. **26**:62–69.
- 35. Baca, H. K., E. Carnes, S. Singh, C. Ashley, D. Lopez and C. J. Brinker. Cell-directed assembly of bio/nano interfaces — a new scheme for cell immobilization. Accounts of Chemical Research. 2007. 40(9): 836-845.
- 36. Harper, J. C., C. Y. Khirpin, E. C. Carnes, C. E. Ashley, D. M. Lopez, T. Savage, H. D. T. Jones, R. W. Davis, D. E. Nunez, L. M. Brinker, B. Kaehr, S. M. Brozik and C. J. Brinker. Cell-Directed Integration into Three-Dimensional Lipid-Silica Nanostructured Matrices. ACS Nano. 2010. 4(10): 5539-5550.
- 37. Baca, H. K., E. C. Carnes, C. E. Ashley, D. M. Lopez, C. Douthit, S. Karlin and C. J. Brinker (). Cell-directedassembly: Directing the formation of nano/bio interfaces and architectures with living cells. Biochimica et biophysica acta. 2011. **1810**(3): 259-267.
- 38. Johnson, P. E., P. Muttil, D. MacKenzie, E. C. Carnes, J. Pelowitz, N. A. Mara, W. M. Mook, S. D. Jett, D. R. Dunphy, G. S. Timmins and C. J. Brinker. Spray-dried multiscale nano-biocomposites containing living cells. ACS Nano. 2015. **9**(7): 6961-6977.
- 39. Fazal, Z., J. Pelowitz, P. E. Johnson, J. C. Harper, C. J. Brinker and E. Jakobsson. Three-dimensional encapsulation of Saccharomyces cerevisiae in silicate matrices creates distinct metabolic states as revealed by gene chip analysis. ACS Nano. 2017. 11(4): 3560-3575.
- 40. Каманина О.А., Федосеева Д.Г., Мачулин А.В., Алферов В.А, Понаморева О.Н. Микроорганизмы и кремнийорганические золь-гель структуры: синергизм формирования архитектуры биоматрикса. Атуальная биотехнологияю 2014. № 3 (10):35-36.
- 41. Ponamoreva O., Kamanina O., Alferov V., Machulin A., Rogova T., Arlyapov V., Alferov S., Suzina N., Ivanova E., Yeast-based self-organized hybrid bio-silica sol-gels for the design of biosensors. Biosensors and Bioelectronics. 2015. **67**:321-326.
- 42. Kamanina O., Lavrova D., Arlyapov V., Alferov V., Ponamoreva O. Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater. Enzyme and Microbial Technology. 2016. **92**:94-98.
- 43. Каманина О.А., Бурмистрова Т.В., Лаврова Д.Г., Мачулин А.В., Понаморева О.Н. Клетки микроорганизмов как структурообразующие агенты в синтезе гибридных кремнийорганических материалов с применением золь-гель технологии. Известия Тульского государственного университета. 2016. №1:3-11.
- 44. Lavrova D., Kamanina O., Machulin A., Suzina N., Alferov V., Ponamoreva O. Effect of polyethylene glycol additives on structure, stability, and biocatalytic activity of ormosil sol-gel encapsulated yeast cells. Journal of Sol-Gel Science and Technology. 2018. 88:1-5.
- 45. Ponamoreva, O.N., Lavrova, D.G., Kamanina, O.A., Rybochkin, P.V. Machulin, A.V. Alferov, V.A. Biohybrid of methylotrophic yeast and organically modified silica gels from sol-gel chemistry of tetraethoxysilane and dimethyldiethoxysilane. Journal of Sol-Gel Science and Technology. 2019. https://doi.org/10.1007/s10971-019-04967-8
- 46. Каманина О.А, Бурмистрова Т.В., Лаврова Д.Г., Понаморева О.Н. Биогибридные материалы на основе силановых прекурсоров и клеток метилотрофных дрожжей. Актуальная биотехнология. 2016. № 3(18): 97-100.

- 47. Понаморева О.Н., Алферов В.А., Каманина О.А., Мачулин А.В., Федосеева Д.Г. *Гибридные* биоматериалы на основе инкапсулированных в органосиликатные материалы метилотрофных дрожжей и их применение в биосенсорном анализе. Известия Тульского государственного университета. 2015. №1:124-132.
- 48. Каманина О.А., Афонина Е.Л., Понаморева О.Н., Строителев В.В. *БПК-биосенсор на основе инкапсулированных в органосиликатную матрицу дрожжей Debaryomyces hansenii*. Актуальная биотехнология. 2015. № 3(14):66-67.
- 49. Понаморева О.Н., Афонина Е.Л., Каманина О.А., Лаврова Д.Г., Арляпов В.А., Алферов В.А., Боронин А.М. Дрожжи Debaryomyces hansenii в органосиликатной оболочке как основа гетерогенного биокатализатор. Биотехнология. 2017. 33(4):44-53.
- 50. Ponamoreva O.N., Afonina E.L., Kamanina O.A., Lavrova D.G., Arliapov V.A., Alferov V.A., Boronin A.M. *Yeast Debaryomyces hansenii within ORMOSIL shells as a heterogeneous biocatalyst*. Applied Biochemistry and Microbiology. 2018. **54**(7): 24–30.
- 51. Понаморева О.Н. Биомиметические материалы: инкапсулированные в золь-гель кремнезема клетки микроорганизмов. Известия Тульского государственного университета. 2016. №2: 42-52.
- 52. Понаморева О.Н., Алферов В.А. *Биомиметические материалы на основе инкапсулированных в ормосил клеток дрожжей как перспективные биокатализаторы для экобиотехнологии*. Актуальная биотехнология. 2017. № 2(21):114-118.

УДК 602.4:628.35:664

РАЗРАБОТКА БИОСЕНСОРНОГО АНАЛИЗАТОРА ДЛЯ ЭКСПРЕСС-ОПРЕДЕЛЕНИЯ БИОХИМИЧЕСКОГО ПОТРЕБЛЕНИЯ КИСЛОРОДА

В.А. Алферов, В.А. Арляпов, Н.Ю. Юдина, М.Г. Зайцев

Тульский государственный университет, Тула, Россия

загрязнения объектов окружающей среды органическими Экспресс-оценка степени соединениями является необходимым компонентом экологического контроля. Учитывая постоянно растущий перечень веществ, поступающих как загрязнители в окружающую среду, эффективным инструментом анализа оказываются методы, основанные на интегральной оценке органических компонентов, а не только на определении содержания индивидуальных веществ. Биохимическое потребление кислорода (БПК) является одним из наиболее широко используемых показателей для контроля чистоты водных сред и представляет, по определению, количество кислорода, необходимое для биохимического окисления органических веществ, содержащихся в образце. Традиционная методика определения БПК требует инкубирования насыщенной кислородом пробы в течение 5, 10 или 20 суток (БП K_5 , БП K_{10} или БП K_{20} , соответственно) [1, 2]. Отсутствие оперативности существенно снижает ценность традиционной методики. Поэтому активно разрабатываются методы экспресс-оценки БПК, основанные на использовании биосенсорных анализаторов. Принципиальным отличием данного метода от стандартного является значительное сокращение времени анализа от 5 суток до нескольких минут.

Биосенсорные анализаторы БПК представляют собой современные аналитические инструменты и с успехом используются для контроля водных экосистем (наряду с традиционными методами определения БПК) за рубежом. К преимуществам биосенсоров можно отнести: короткое время ответа, портативность, удобство в работе, а также отсутствие специальных требований к подготовке исследуемого образца [3]. Микроорганизмы, на которых основан рецепторный элемент БПК-биосеноров, являются доступным биологическим материалом. Клетки микроорганизмов легко воспроизводятся, культивируются и поддерживаются в чистой культуре. В некоторых случаях они обеспечивают жизнеспособность и активность ферментных систем в течение нескольких лет. Важно отметить, что в России аналогичные анализаторы до настоящего времени промышленно не выпускались. Кроме того, отсутствовала аттестованная методика экспресс-определения БПК.

На данный момент описано большое количество лабораторных моделей и несколько промышленно выпускаемых биосенсорных анализаторов БПК. Биосенсоры позволяют производить определение БПК в среднем диапазоне 2–300 мг/л за время порядка нескольких минут. Однако большое количество публикаций, выходящих регулярно по данной тематике, свидетельствуют о том, что еще не получены характеристики, которые остановили бы процесс дальнейшего поиска. Актуальными проблемами разработки БПК-сенсоров являются повышение чувствительности анализа, увеличение времени жизни биоматериала в рецепторных элементах биосенсоров и упрощение требований по обслуживанию анализатора [4, 5].