УДК 328

ЛИПОСОМАЛЬНЫЙ ПРЕПАРАТ, СОДЕРЖАЩИЙ ДВЕ ЛЕКАРСТВЕННЫЕ СУБСТАНЦИИ КАРНОЗИН И ЛИПОЕВУЮ КИСЛОТУ: ПОЛУЧЕНИЕ И ВЛИЯНИЕ НА АГРЕГАЦИЮ ТРОМБОЦИТОВ

В.А. Щелконогов^{1,2,3}, Б.Т. Адулждаббар¹, Е.С. Дарнотук¹, Г.М. Сорокоумова¹, Н.С. Шастина¹, О.А. Баранова², А.В. Чеканов², К.Д. Казаринов³, В.П. Мудров⁴, Э.Ю. Соловьева², А.И. Федин²

1 МИРЭА-Российский технологический университет, Москва, Россия

Сосудистые заболевания головного мозга находятся на втором месте среди всех причин смерти, уступая заболеваниям сердечно-сосудистой системы и опережая онкологическую патологию. Не менее, важен фактор ишемии в развитии хронических нарушений мозгового кровообращения, вследствие чего образуется сосудистая деменция. Поэтому ишемический инсульт следует рассматривать в качестве ключевого патогенетического фактора развития самых разнообразных нозологических форм в рамках сосудистой патологии головного мозга и, в первую очередь, инсульта [1]. В результате ишемического повреждения происходит уменьшение мозгового кровотока, возникновение и прогрессирование окислительного стресса; микроциркуляторные нарушения, воспалительные реакции, повреждение гематоэнцефалического барьера (ГЭБ) и др. [2]. В связи с этим создание рациональных лекарственных форм, позволяющих увеличивать биодоступность фармацевтических субстанций и их направленной доставки к месту патологии – важнейшие задачи при создании новых лекарственных форм известных препаратов.

Настоящая работа посвящена созданию комбинированной липосомальной лекарственной формы, содержащей одновременно две субстанции: карнозин (К) и липоевую кислоту (ЛК). Эти оба вещества проявляют антиоксидантные свойства и применяются при различных патологиях, в том числе и при нейродегенеративных расстройствах. К сожалению, они характеризуются низкой биодоступность, т. к. ЛК – плохо растворяется в воде, а К – быстро расщепляется ферментом карнозиназой. Для увеличения растворимости ЛК и защиты К от фермента нами предложено использовать их липосомальную форму.

Липосомы получали как из природного липида соевого фосфатидилхолина (c- Φ X), так и синтетического липида – дипальмитоил – Φ X в присутствии холестерина и без него. Для включения ЛК применяли метод пассивной загрузки, а для K – метод активной загрузки с использованием сульфата аммония. Все образцы оценивали по эффективности включения ЛК и K, морфологии и размерам частиц. Результаты проведенных исследований представлены в Таблице 1.

В результате проведенных исследований было установлено, что наиболее оптимальные условия создания липосом (метод «активная» загрузка) позволяют получить сферические наночастицы, имеющие диаметр 245 нм, а эффективность включения составляет для JK-50% и для K-30% (Табл.1). Полученные липосомы обладают высокой стабильностью (в течение 9 месяцев) при хранении при комнатной температуре.

Таблица 1. Характеристики липосомального препарата содержащего одновременно карнозин и липоевую кислоту

Состав липосом	Лекарственное вещество			ЭВ, %		
Слипидов = 40мг/мл	ЛК Сисх., мг/мл	Карнозин Сисх., мг/мл	рН среды	ЛК	Карнозин	Размер частиц, нм
пассивная загрузка						
ΦХ	5	20	7,4	50 ± 10	12 ± 5	245
активная загрузка						
ΦХ	5	20	7,4	47 ± 10	33 ± 10	245
$\Phi X + X_{OЛ}$.	5	20	7,4	50 ± 10	31 ± 10	245
ДПФХ	5	20	7,4	48 ± 10	27 ± 10	245

² Российский национальный исследовательский медицинский университет имени Н.И. Пирогова Минздрава России, Москва, Россия

³ Институт радиотехники и электроники имени В.А. Котельникова РАН, Московская обл., Россия ⁴ 9-й лечебно-диагностический центр Минобороны России, Москва, Россия

№3 (30), 2019

Исследование антиоксидантной активности этих двух субстанций в модельной системе (реакция Фентона) показало, что при одновременном их использовании в концентрации 10 мM - K и 24 мM - ЛK, значительно (в 12 раз) снижается содержание продуктов окисления липидов (ТБК-активных продуктов)

Изучение влияния комбинированного липосомального препарата, содержащего и K и JK на агрегацию тромбоцитов (Tц) крови условно здоровых доноров показало, что препарат, содержащий K-1,8 мМ и JK-1 мМ, ингибировал агрегацию тромбоцитов, индуцированную арахидоновой кислотой на 32 %. Важно отметить что водорастворимые препараты карнозина (1,8 мМ) и липоевой кислоты (1 мМ) никак не влияли на агрегацию Tц, обусловленную AK. Вероятно, это связано с плохой способностью проникать в клетку этих препаратов, тогда как липосомальный комбинированный препарат более легко проникает через клеточную мембрану путём её слияния с мембраной тромбоцита.

Таким образом, нами получен эффективный комплексный препарат, содержащий одновременно два антиоксиданта и проявляющий антиагрегационные свойства в отношении тромбоцитов человека.

Работа выполнена в рамках Государственного задания (№ госрегистрации 1 04 011 056).

ЛИТЕРАТУРА

- 1. С.Г. Бурчинский. Ишемия головного мозга: возможности комплексной фармакологической коррекции. Статьи института геронтологии АМН Украины // Т. 14, 2006, 15–18.
 - 2. Гусев Е.И., Скворцова В.И. Ишемия головного мозга. // М.: "Медицина", 2001., 328 с.