

УДК 636.087.69

ТЕХНОЛОГИЯ КОРМОВЫХ ДОБАВОК НА ОСНОВЕ ОТХОДОВ ПРОИЗВОДСТВА МИДИЙ О.Е. Битютская, О.И. Лавриненко, Е.В. Спирато

Керченский государственный морской технологический университет, г. Керчь, Россия

ВВЕДЕНИЕ

Одна из самых затратных статей в животноводстве – корма, на них приходится от 50 до 80 % всех расходов. С ценовой политикой на корма связана нерентабельность и неконкурентоспособность не только отдельных отраслей, но и животноводства в целом. Но и при таких затратах нет гарантии в том, что корм сбалансирован по питательным веществам, макро- и микроэлементам, витаминам. Поэтому для современного животноводства по-прежнему актуальны вопросы и полноценности рациона, и его экономичности.

Известно, что для развития животноводства особое значение имеют кормовые добавки животного происхождения. Их недостаточность в кормах приводит к перерасходу растительных кормов [1, 2]. В литературе имеются данные об использовании двустворчатых моллюсков для получения кормовых паст, гидролизатов для кормления птиц и животных [3, 4].

Серин

№3 (30), 2019

Исследованиями, проведенными в 2002 — 2011 гг., было показано, что черноморские мидии *Mytilus galloprovinciallis* Lam. и отходы их переработки целесообразно использовать для получения комбинированных кормовых добавок для животноводства [5–8].

Цель работы – разработка технологии кормовых добавок на основе отходов мидийного производства.

МАТЕРИАЛЫ И МЕТОДЫ

В результате ферментативного гидролиза мидийного сырья [9] был получен плотный (непроферментованый) остаток пастообразной консистенции, который составлял в среднем 6,5 % с содержанием сухих веществ 26,7 %. Химический состав плотного остатка характеризовался содержанием в среднем: белка (14 ± 0.5) %, жира (5.8 ± 0.7) %, минеральных веществ (2.6 ± 0.1) %, углеводов (4.4 ± 0.5) % и общей энергетической питательностью (ОЭ) (4.2 ± 0.2) МДж/кг $((0.37\pm0.02)$ к.е.) (таблица 1).

Сухие		Массовая доля, %	БЭР,	ОЭ,		
вещества	жир	минеральные вещества	белок (N _o ×6,25)	углеводы	$\Gamma/\kappa\Gamma$	МДж/кг
30,2	7,3	2,7	15,3	4,2	49,0	4,8
27,4	5,3	2,9	13,8	6,1	54,0	4,0
25,2	4,6	2,3	12,7	5,2	56,0	3,6
23,6	2,8	3,0	12,5	5,4	53,0	3,1
26,6	7,9	2,3	13,2	3,4	32,0	4,7
26,4	6,1	2,2	14,5	3,8	36,0	4,3
27,7	6,5	2,7	16,2	2,4	23,0	4,6

Таблина 1 Химический состав милийного плотного остатка

В аминокислотном составе белков плотного остатка преобладали аспарагиновая и глутаминовая кислоты, из незаменимых — триптофан (таблица 2). Показатели аминокислотного скора ниже такого в идеальном белке, но коэффициент аминокислотной сбалансированности ($U \rightarrow 1$) составляет 0,9.

,		, ,			
	Содержани	Аминокислотный скор			
Наименование аминокислот	в образце, г / 100 г. белка	в идеальном белке, г / 100 г. белка	относительно шкалы ФАО/ВОЗ		
Незаменимые, в т. ч.	27,95				
Валин	3,40	5,0	0,68		
Изолейцин	3,43	4,0	0,86		
Лейцин	5,20	7,0	0,74		
Лизин	4,57	5,5	0,83		
Метионин + Цистин	1,66 + 0,95	3,5	0,75		
Треонин	3,04	4,0	0,76		
Триптофан	0,99	1,0	0,99		
Фенилаланин + Тирозин	2,57 + 2,14	6,0	0,79		
Заменимые, в т. ч.	38,51				
Аланин	3,35				
Аргинин	4,20	1	-		
Аспаргинова кислота	6,99	ı	-		
Гистидин	1,32	ı	-		
Глицин	4,90	-	-		
Глутаминовая кислота	10,60	1	-		
Пролин	3,66	ı	-		

Таблица 2 Аминокислотный состав белка мидийного плотного остатка

Липиды мидийного плотного остатка содержали до 30 % ПНЖК, из них 46 % приходилось на жирные кислоты семьи ω 3 (таблица 3). Для сравнения, на долю ПНЖК в кормовых продуктах, полученных путем ферментативного гидролиза, с черноморской хамсы и криля приходится соответственно 8,60 % и 15 % [10].

	Содержание, %		Содержание, %	
Поличеновение меньии и	суммарного		суммарного	
Наименование жирных	содержания ЖК	Наименование жирных кислот	содержания ЖК	
кислот	в пересчете на сухие		в пересчете на сухие	
	вещества		вещества	
Насыщенные, в т. ч	39,0	Полиненасыщенные, у т. ч.	27,9	
Лауриновая С:12	0,1	Линолевая 18:2; 9, 12 ω 6	11,9	
Миристиновая С:14	6,7	α-Линоленовая 18:3; 9, 12, 15 ω 3	1,9	
Пальмитиновая С:16	22,2	γ-Линоленовая 18:3; 6, 9, 12 ω 6	1,5	
Стеариновая С:18	4,2	Арахидоновая 20:4; 5, 8,11, 14 ω 6	1,6	
Арахидиновая С:20	5,8	Эйкозопентаеновая 20:5; 5, 8, 11,	5.0	
Мононенасыщенные, у т. ч.	21,6	14, 17 ω 3	5,9	
Пальмитолеиновая 16:1; 9	11,7	Докозопентаеновая 22:5; 7, 10, 13,	0.4	
Олеиновая 18:1; 9	9,5	16, 19 ω 3	0,4	
Эруковая 22:1; 13	0,4	Докозогексаеновая 22:6; 4, 7, 10,	4,7	
5 p J 11 5 2 2 1 1 , 1 5	-,1	13, 16, 19 ω 3		

Таблица 3 Жирнокислотный состав липидов мидийного плотного остатка

В качестве одного из вариантов утилизации плотного остатка нами предложена следующая технологическая схема: замораживание остатка для частичного удаления свободной влаги после дефростации, грануляции и сушки в потоке горячего воздуха для достижения массовой доли влаги не более 12 %. Готовый кормовой продукт – мидийного крупка – содержит ($46,38 \pm 0,1$) % протеина, общая энергетическая питательность – на уровне 1,17-1,19 к.е.

Эффективность мидийной крупки была подтверждена на опытных цыплятах с пятидневного возраста. Кормовая добавка вводилась в количестве 0.25~% от рациона, способствовала увеличению живой массы цыплят на 8.0~%, повышала сохранность на 5.0~%, при этом потери кормов снижались на 7.0~% [4].

Кроме плотного мидийного остатка отходами производства (до 66 %) в результате ферментативного гидролиза, как и при получении варено-мороженого мяса, являются мидийные створки.

Сухое вещество створок мидий состоит на 92.6-98.5 % из минеральных солей, на 1.5-7.4 % органических веществ, среди которых на долю азота общего приходится 0.15-0.50 %, липидов не более 0.05 %.

В элементарном составе сухих веществ створок 36,1-39,6 % приходится на кальций, 5,5-8,55 % — углерод, 0,01-0,39 % — магний, 0,01-0,09 % — фосфор; из микроэлементов обнаружены магний — 0,9 мг %, медь — 2,5 мг %, цинк — 0,75 мг %.

Одним из перспективных ингредиентов при изготовлении кормовых добавок может стать морская трава (зостера) – $Zostera\ marina\ L$., полисахариды которой имеют ряд полезных и целебных свойств. Установлено, что полисахарид зостерин в 2,0-2,5 раза увеличивает накопление в селезенке животных иммунных клеток, обладает выраженным антимикробным эффектом. Среди углеводов в зостере присутствуют редуцирующие сахара, альгиновые кислоты, пентозаны, метилпентозаны, клетчатка. Известно, что клетчатка ($12,0-15,0\ \Gamma/k\Gamma$) создает благоприятные условия для нормального продвижения пищи вдоль желудочно-кишечного тракта, нормализует деятельность полезной микрофлоры, способствует выведению из организма холестерина. Кроме того, зостера богата различные макро- и микроэлементы, в т. ч. железом, селеном, йодом [11-14].

У опытных животных, получавших в течение одного месяца ежесуточно с рационом индикаторное количество стронция-85 и альгинат натрия, выделенный из морской травы, накопление радионуклида (по сравнению с контрольной группой) снижалось (таблица 4) [15–17].

Таким образом, непроферментированный плотный остаток после гидролиза мяса мидий, морская трава и мидийные створки представляют интерес в качестве ингредиентов для приготовления кормовых добавок.

В таблице 5 приведены сравнительные данные по химическому составу мяса мидии-сырца (ноябрь мес.), мидии-сырца дробленой и створок мидий (воздушно сухих).

№3 (30), 2019

Предложены соотношения мидийной массы: створок: зостеры в белково-минеральной добавке (БМД-M)-15:4:1, мидийной массы: створок в БМД-M-1-4:1. Технологическая схема производства представлена на рисунке 1.

Таблица 4 Кратность накопления стронция-85 в животных [17]

Альгинат натрия из ВБР	Кратность накопления стронция-85	% снижения от контроля	
Контроль	$9,74 \pm 0,36$	-	
Ламинария японская	$2,59 \pm 0,30$	73,4	
Цистозира	$2,96 \pm 0,30$	69,6	
Зостера	$2,67 \pm 0,41$	72,6	

Таблица 5 Химический состав исходного сырья, используемого при приготовлении кормовых добавок ($M \pm m_x$; n = 5)

Название объекта		Содержание в % сырого вещества				
исследования	CB	протеин	жир	зола	углеводы	
Створка мидий	$98,9 \pm 0,2$	$2,0 \pm 0,3$	-	$94,2 \pm 0,01$	-	
Мидийная масса	$22,4 \pm 0,2$	$13,5 \pm 0,5$	$2,6 \pm 0,3$	$3,5 \pm 0,01$	2.8 ± 0.1	
Зостера	$83,7 \pm 0,4$	4.8 ± 0.2	-	17.8 ± 0.01	$61,1 \pm 0,3$	

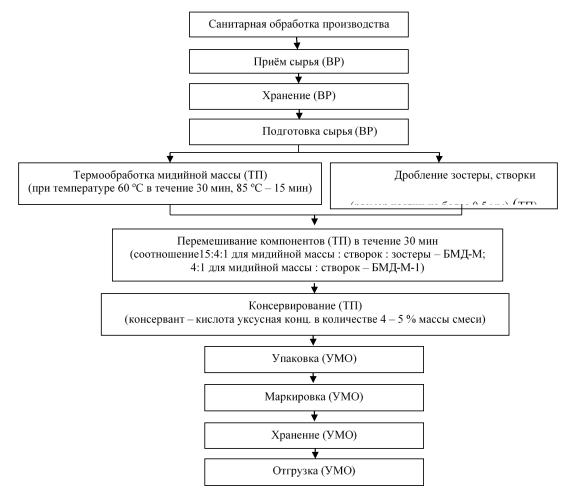


Рисунок 1 — Технологическая схема производства кормовых добавок (BP — стадии вспомогательных работ; $T\Pi$ — стадии основного технологического процесса; YMO — стадия упаковки, маркирования и отгрузки готовой продукции)

Протеин в кормовых добавках в среднем находился на уровне 105,0-110,0 г/кг (таблица 6). Из минеральных веществ преобладали макроэлементы, составляющие основу костной ткани животных: кальций (3,7–9,5 %) и фосфор (0,13–0,34 %). Липиды кормовых добавок содержат 19,0–19,5 % полиненасыщенных жирных кислот, в БМД-М преобладают арахидоновая, эйкозопентаеновая, докозопентаеновая жирные кислоты, в БМД-М-1 – линолевая и арахидоновая (таблица 7). Обменная энергия составляла 0,85-0,93 к. е.

Harneavanavara	Массовая доля, г/кг					
Наименование кормовых добавок	сырого		20111	в том числе		
кормовых дооавок	протеина	жира золы		кальция	фосфора	
БМД-М	$105,0 \pm 4,6$	$31,0 \pm 2,7$	$250,0 \pm 16,7$	$85,0 \pm 3,6$	$1,2 \pm 0,1$	
БМД-М-1	$110,0 \pm 3,5$	$44,0 \pm 3,0$	$208,4 \pm 3,3$	$93,0 \pm 2,5$	$1,3 \pm 0,1$	
Наиманаванна	Наименование рмовых добавок углеводов В т. ч. клетчатки		Γ		Активная	
паименование кормовых добавок			в т. ч. клетчатки		кислотность (pH)	
БМД-М	$45,0 \pm 1,0$	$20,0 \pm 1,3$		$0,87 \pm 0,02$	4,5	
БМД-М-1	$25,0 \pm 1,0$	-		0.95 ± 0.02	4,3	

Таблица 6 Химический состав кормовых добавок, $(M \pm m_x; n = 5)$

Таблиця 7 Жирнокислотный состав липидов кормовых добавок

	Содержание ПНЖК, %						
Наименование кормовых		в том числе					
добавок	Всего	C 18:2	C18:3	C 20:4	C 20:5 C 22:5	C 22:6	
БМД-М	19,5	3,7	2,7	4,5	5,0	3,6	
БМД-М-1	18,9	4,9	2,9	5,0	3,3	2,8	
Наименование кормовых добавок	C 18:1	Н	КК	Биологическая эффективность, ед./1 жиру			
БМД-М	7,6	68,5			•		
БМД-М-1	12,5	64,2					

Кислотное число жира в кормовых добавках находилось на уровне $25,0-40,0\,$ мг КОН, перекисное $-0.1\,$ %I2.

На основе органолептических (цвета, запаха, консистенции), химических и микробиологических показателей установлен срок хранения кормовых добавок при температуре окружающей среды — 4 мес.; лимитирующим показателем хранения явился рост кислотного числа.

Таким образом, предложенные белково-минеральные кормовые добавки содержат биологически активные вещества — аминокислоты, полиненасыщенные жирные кислоты, зостерин, минеральные вещества, что позволит сбалансировать рацион животных и снизить затраты комбикормов на единицу прироста живой массы.

Внедрение технологии белково-минеральных кормовых добавок позволит отнести основное производство мидийных концентратов к малоотходным.

ЛИТЕРАТУРА

- 1 Протеиновое питание сельскохозяйственных животных и пути решения проблемы протеина в животноводстве // Электр. дан. Режим доступа URL: https://ptica-ru.ru/korm / 3092-proteinovoe-pitanie.html (дата обращения: 25.07.2019).
- 2 Пути развития кормовой базы и обеспечение животных полноценными кормами // Электр. дан. Режим доступа URL: https://infopedia.su/7 x 8318.html (дата обращения: 25.07.2019).
- 3 Белково-минеральные добавки в рационах свиней / О.Е. Битютская, Л.П. Борисова, В.И. Скрепец и др. // Аграрна наука виробництву. -2008. -№ 2. -ℂ. 15.
- 4 Борисова Л.П. Губанова А.Г., Битютская О.Е. Кормовая добавка из отходов переработки мидий // Рыбное хозяйство Украины. 2001. № 2. С. 28–31.
- 5 Гидробионты и отходы из разделки как перспективное сырье для получения БАД к пище / М.В. Новикова // Морские прибрежные экосистемы: водоросли, беспозвоночные и продукты их переработки: материалы 1-ой Междунар. науч.-практ. конф., Москва-Голицыно, 26–28 авг. 2002 г. М., 2002. С. 161-164.

№3 (30), 2019

- 6 Новикова М.В. Разработка технологи получения биологически активных добавок из гидробионтов и отходов их разделки: автореф. дис... д-ра техн. наук. М., 2003. 49 с.
- 7 Щеглов Л.Н., Истомина Т.В., Виннов А.С. Белково-минеральные кормовые продукты на основе отходов переработки двустворчатых моллюсков Азово-Черноморского бассейна // Рыбное хозяйство Украины. -2008. -№ 6(59). C. 64–68.
- 8 Murado M., Gonzalez M., Pastrana L. Mussel processing wastes as a fermentation substrate // Fisheries Processing: biotechnological applications. 1994. Ch. 13. P. 311–343.
- 9 Битютская О.Е. Технология белково-углеводного концентрата из черноморских мидий: дис... канд. техн. наук. Киев, 2011. 195 с.
- 10 Технологические параметры получения белковых гидролизатов и характеристика их кормовой ценности / Ю.А. Бойко, А.Г. Мухленов, Т.К. Лебская, Ю.Н. Чайковская // Морские прибрежные экосистемы: водоросли, беспозвоночные и продукты их переработки: материалы 2-ой Междунар. науч.-практ. конф., Архангельск, 5–7 окт. 2005 г. М., 2005. С. 180–183.
- 11 Биологически активные полисахариды морских водорослей и морских цветковых растений / Ю.Н. Лоенко, Г.П. Лямкин, А.А. Артюков, Г.Б. Еляков // Раст. ресурсы. 1991. Т. 27. № 3. С. 150—160.
- 12 Зостерин: монография / Ю.Н. Лоенко, А.А. Артюков, Э.П. Козловская и др. / Владивосток: Дальнаука, 1997. 212 с.
- 13 Артюков А.А. Разработка биотехнологических основ получения некоторых биологически активных веществ из океанического сырья: дис... д-ра биол. наук. Владивосток, 2012. 50 с.
- 14 Иммуномодулирующее действие пектина морских трав зостерина / В.А. Мирошниченко, А.С. Шаронов, Т.Н. Суровенко и др. // Иммуномодуляторы природного происхождения (Владивосток, 9–10 окт. 1990 г.): тез. докл. рабочего совещ. Владивосток, 1990. С. 36–37.
- Корзун В.Н., Реус М.А. Использование черноморской зостеры как пищевой добавки лечебно-профилактического назначения // Громадське харчування і туристична індустрія у ринкових умовах: Сб. научн. работ. 2001. С. 126–130.
- 16 Корзун В.Н., Сагло В.И., Парац А.М. Питание в условиях широкомасштабной аварии и её последствий // Укр. мед. часопис. -2002. -№ 11-12. C. 99-105.
- 17 Пищевые продукты из водорослей как способ минимизации действия радиации и эндемии / В.Н. Корзун, В.И. Сагло, А.М. Парац и др. // Проблемы питания. 2004. № 1(2). С. 29–34.