УДК 546.22/24; 57.083.13

КОЛИЧЕСТВЕННАЯ ХАРАКТЕРИСТИКА СОДЕРЖАНИЯ БЕЛКА И КАДМИЯ В СОСТАВЕ БИОГЕННЫХ НАНОЧАСТИЦ СУЛЬФИДА КАДМИЯ. ОЦЕНКА БИОЦИДНОЙ АКТИВНОСТИ НАНОМАТЕРИАЛА

О.А. Журавлева, Т.А. Воейкова, В.С. Кулигин, В.Г. Дебабов

Национальный исследовательский центр «Курчатовский институт», Москва, Россия

Наночастицы сульфида кадмия (NPsCdS) обладают уникальными свойствами и активно применяются в различных областях био- и нанотехнологии, медицины. Существуют различные физические и химические методы получения NPsCdS, а также «зеленый» синтез с использованием биологических субстанций, в частности микроорганизмов. Этот метод является экологически чистым, масштабируемым, дешевым, не требует сложных условий синтеза. Биогенные NPsCdS стабилизированы бактериальными биополимерами, в основном белками, адсорбированными на их поверхности. Состав белкового покрытия наночастиц и его количественная характеристика во многом определяют свойства наноматериала, их функциональную значимость, возможность совместимости с биологическими объектами.

Цель работы. Нами был исследован качественный состав «белковой короны» NPsCdS, полученных с использованием штаммов бактерий различных видов — Shewanella oneidensis MR-1 и Bacillus subtilis 168 (NPsCdS/Shewanella и NPsCdS/Bacillus). Установлено, что набор белковых молекул на поверхности наночастиц уникален и определяется бактериальным штаммом, использованным в биосинтезе. Так, на поверхности NPsCdS/Shewanella было обнаружено более 10 видов белков, принадлежащих к белкам внешней или цитоплазматической мембраны бактерии, тогда как NPsCdS/Bacillus содержали на поверхности единственный белок флагеллин [1].

Количественное соотношение белков было исследовано методом денситометрического анализа электрофореграмм. Установлено существенное различие доли бактериальных белков в образцах NPsCdS/Shewanella и NPsCdS/Bacillus, составляющее 34 % и 5 % от общего веса наночастиц, соответственно. Результаты анализа содержания Cd в NPsCdS/Bacillus и NPsCdS/Shewanella методами EDX и атомно-эмиссионной спектроскопии также показали увеличение доли Cd в NPsCdS/Bacillus при одинаковой концентрации наночастиц. Таким образом, установлено, что в образцах наночастиц с пониженным содержанием белка увеличена доля Cd, что может отражаться на функциональной активности наноматериала.

Биоцидная активность NPsCdS/Shewanella и NPsCdS/Bacillus была оценена в отношении бактерий Bacillus licheniformis (B-7360), Enterococcus faecalis (B-12629), Escherichia coli K-12 (B-3345), Pseudomonas putida (B-4492) и дрожжей Saccharomyces cerevisiae (Y-3251) и Candida albicans (Y-3108). Установлено различие в уровне функциональной активности NPsCdS в зависимости от соотношения долей белка и Cd. Показано, что биоцидная активность NPsCdS/Bacillus, характеризующихся повышенной долей Cd, увеличена по сравнению с NPsCdS/Shewanella на 30–50 %. В качестве одной из моделей механизма токсичности NPsCdS рассматриваются процессы окисления серы на поверхности наночастиц до оксидов серы с последующей их десорбцией в раствор и образованием свободных ионов тяжелого металла Cd²+. Высвобождаемые из наночастиц Cd²+ приводят к генерации активных форм кислорода, которые нарушают проницаемость мембран, целостность клеточных структур, что приводит к гибели клеток [2].

Исследование поддержано государственным заданием НИЦ «Курчатовский институт» № AAAA-A20–120093090016–9. Бактериальные штаммы предоставлены НБЦ ВКПМ НИЦ «Курчатовский институт» – ГосНИИгенетика.

Литература

Воейкова Т.А., Кожухова Е.И. и др. Микробный синтез наночастиц сульфида кадмия. Влияние бактерий различных видов на характеристики биогенных наночастиц // Российские нанотехнологии. 2020. Т. 15. № 2. С. 194—204. DOI 10.1134/S199272232002020X

Gahlawat G., Choudhury A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes // RCS Adv. 2019. V. 9. P. 12944–12967. DOI 10.1039/C8RA10483B