УДК 578.2

РЕПЛИКАТИВНЫЕ СВОЙСТВА АДАПТАЦИОННЫХ МУТАНТОВ РЕКОМБИНАНТНОГО ВИРУСА ВЕЗИКУЛЯРНОГО СТОМАТИТА, НЕСУЩЕГО ГЛИКОПРОТЕИН ВИРУСА ЭБОЛА

И.А. Климкина, П.П. Голдовская, О. Попова, Д.Е. Зрелкин, О.В. Зубкова.

НИЦЭМ имени почетного академика Н.Ф. Гамалеи Министерства здравоохранения РФ, Москва, Россия

В декабре 2013 года в Западной Африке началась вспышка болезни, вызванной вирусом Эбола (БВВЭ), которая унесла более 11000 жизней. БВВЭ характеризуется тяжелой лихорадкой, сопровождающейся системным воспалением и повреждением эндотелиального клеточного барьера, что приводит к полиорганной недостаточности с высоким уровнем летальности (50 – 90 %).

РНК-содержащие вирусы, в частности вирус Эбола, имеют высокую частоту мутаций. Исследования различных мутаций в белках вируса Эбола показали, что наиболее эффективными из них, с точки зрения репликации вируса являются те, которые затрагивают его гликопротеин (GP). Возникновение мутаций в гене, кодирующем GP, изменяют рост в клеточной культуре. Изучение репликативных свойств адаптационных мутантов необходимо для прогнозирования трансмиссивности и патогенности вируса Эбола.

Рекомбинантный вирус везикулярного стоматита (rVSV), можно использовать как модельный вирус для изучения фенотипических характеристик и репликативной способности. Целью данного исследования являлось изучение корреляции между мутационной изменчивостью и репликативными свойствами рекомбинантного вируса везикулярного стоматита, несущего гликопротеин вируса Эболы (VSV-GP) при культивировании на клетках линии Vero E6. Для исследования были взяты рекомбинантные вирусы rVSVs, несущие следующие мутации белка GP: G524R, T544I, H549R, D552N, G557R и R574I. Репликативные свойства оценивали по морфологии бляшек, а также скорости их роста на клетках Vero E6.

В результате проведенного исследования была выявлена корреляция между мутацией и репликативными свойствами rVSV-GP. Для всех мутантов бляшки в основном начинали формироваться через 24—48 часов после заражения и росли до 6—7 суток. По морфологическим характеристикам бляшке адаптационные мутанты можно разделить на три категории: 1) мутации, вызывающие крупные бляшки, 2) средние бляшки и 3) мелкие бляшки. Вирусы, несущие мутации G524R и H549R обладали мелкобляшечным фенотипом. Сформированные бляшки были в диаметре 1,65 и 1,59 мм соответственно. При этом у вируса с мутацией H549R они были значительно меньше, более неоднородные с нечеткими краями. rVSV несущий ген GP дикого типа давал круглые однородные бляшки среднего размера (2,05 мм) с ровными краями. Также бляшки среднего размера наблюдали у вируса, несущего мутацию R574I. Однако они были неоднородными, с четкими краями и зоной лизиса в центральной части. К адаптационным мутантам, имеющим большой размер бляшек, относятся rVSV-GP с T544I, D552N и G557R. По сравнению с диким типом фенотип бляшек заметно отличался. Они формировали достаточно крупные однородные бляшки с ровными краями и центральной зоной лизиса. Так мутант Т544I формировал бляшки 2,8 мм, D552N 3,45 мм, G557R 3,1 мм.

Таким образом, проведенные нами исследования свидетельствуют, что по маркерному признаку размера, а также формы бляшек есть отличия среди адаптационных мутантов.

Литература

Dietzel E., Schudt G., Krähling V., Matrosovich M., Becker S. 2017. Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak. Journal of Virology 91:e01913–16.

Ruedas JB, Arnold CE, Palacios G, Connor JH. 2018. Growth-adaptive mutations in the Ebola virus Makona glycoprotein alter different steps in the virus entry pathway. J Virol 92:e00820–18.