№1 (35), 2021

УДК 66.047

ИДЕНТИФИКАЦИЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ПРОФАГОВ В ГЕНОМАХ ШТАММОВ BACILLUS PUMILUS

Д.С. Пудова, А.А. Тойменцева, М.Р. Шарипова

Казанский (Приволжский) федеральный университет, Казань, Россия

Штамм В. рumilus 7Р был выделен из почв Республики Татарстан, как продуцент внеклеточной рибонуклеазы. Приобретение штаммом 7Р устойчивости к стрептомицину привело к появлению мутантного штамма 3–19 с увеличенной активностью гидролитических ферментов (протеиназ, фосфатазы и рибонуклеазы). На сегодняшний день, упрощение и снижение стоимости промышленного производства ферментов является актуальной задачей для биотехнологии. С целью получения эффективной экспрессии генов ферментов мы планируем провести редактирование геномов В. pumilus путем использования метода CRISPR/Cas9. С помощью данной системы появилась возможность удалять специфические последовательности генов с высокой точностью и эффективностью, создавая при этом мутантные штаммы с необходимыми свойствами. При этом одной из проблем данного метода является трансформация природных штаммов. Низкая эффективность трансформации может быть связана с динамической частью бактериального генома. Известно, что многие биотехнологически важные бактериальные культуры инфицированы бактериофагами, которые способны влиять на свойства бактерий. Целью данного исследования являлось идентификация последовательностей профагов в геномах двух штаммов В. рumilus 7Р и 3–19.

Полногеномное секвенирование двух штаммов проводили на платформах Ion Torrent, 454 GS Junior и Oxford Nanopore MinION, что обеспечило общее покрытие геномов равное 42х. Фильтрацию ридов по качеству проводили с использованием программы Trimmomatic v0.32. Сборку генома проводили с использованием геномного ассемблера SPAdes v. 3.12.0, качество сборки проверяли с помощью программы QUAST v. 2.3. В результате сборки длина геномов штаммов В. pumilus 7P и 3-19 составила 3.62 и 3.61 Мб соответственно. Финальные сборки занесены в базу данных NCBI под номерами СР058911.1 для 7Р и СР054310.1 для 3–19. Поиск областей профагов в бактериальных геномах проводили с использованием инструментов PHAge Search Tool - Enhanced Release (PHASTER) и PhiSpy со стандартными параметрами анализа. Анализ двух геномов показал отсутствие значительных различий между штаммами. С помощью программы PHASTER в геномах было выявлено наличие пяти профаговых регионов, два из которых (Вр1 и Вр2) были признаны "достоверными". Наличие последовательностей профагов Bp1 и Bp2 также подтверждены программой PhiSpy. Содержание GC-пар в предсказанных фаговых регионах (<40.0 %) отличалось от GC-состава всего бациллярного генома штаммов равного 41,9 %. Это подтверждает, что данные участки ДНК попали в геном извне, т. е. являются мобильными элементами. Более 50 % белков Вр1 профагового региона сходны с белками умеренного бациллярного фага ф105, который был идентифицирован в геноме B. subtilis 168. Известно, что наличие этого профага связано с низкой эффективностью трансформации бактерий В. subtilis [1] и репрессией механизма горизонтального переноса генов [2]. Таким образом, присутствие профага Вр1 в геномах штаммов могло повлиять на механизм естественной компетентности бактерий B. pumilus.

Работа выполнена в рамках Программы стратегического академического лидерства Казанского (Приволжского) федерального университета и поддержана грантом РФФИ № 19–08–00853 (A).

Литература

^{1.} Garro, A.J. Relationship Between Lysogeny, Spontaneous Induction, and Transformation Efficiencies in *Bacillus subtilis / A.J. Garro, M.F. Law // J. Bacteriol. – 1974. – V.120. – P.1256–1259.*

^{2.} Bose, B. A conserved anti-repressor controls horizontal gene transfer by proteolysis / B. Bose, J.M. Auchtung, C.A. Lee, A.D. Grossman // Mol. Microbiol. – 2008. – V.70. – P.570–582.