УДК 556: 551

ОЦЕНКА БИОГЕННОСТИ И ТОКСИЧНОСТИ ЭЛЕМЕНТОВ В ЭКОЛОГИЧЕСКОЙ ГИДРОХИМИИ

И.С. Полянская

Вологодская молочнохозяйственная академия, Вологда, Россия

Специалист по водным биоресурсам и аквакультуре осуществляет измерения гидрохимических показателей как в производственно-технологической, так и в научно-исследовательской деятельности. По классификации О.А. Алекина по преобладающему аниону воды делят на гидрокарбонатные, сульфатные и хлоридные. В соответствии с законом Дитмара, в любом образце Мирового океана, преобладающими являются ионы: кальция, натрия, магния, калия и, несмотря, что их содержание в ультрапресной воде и рассоле превышает два порядка, основные катионы и элементы анионов, а также растворённых в воде газов и органогенов органических веществ считаются макроэлементами воды и их исследование наиболее стандартизировано для различных вод.

Из неорганических веществ в настоящее время, помимо названных макроэлементов, контролируют обычно восемь-двенадцать показателей. Однако развитием практической экологической гидрохимии, как составляющей нутрициологии для гидробионтов, количество контролируемых элементов может быть существенно выше.

При оценке биогенности / токсичности воды, в зависимости от конкретной составляющей в виде милли-, микро – наноэлементов малоопасных веществ, на современном этапе предлагаем использовать классификацию биоэлементов с учётом значений латинских приставок (милли-, микро-, нано) [1, 2]. При этом состав воды может расширенно контролироваться в научно-исследовательской, а затем и в производственно-технологической деятельности по восьми-девяти десяткам параметров важных для жизнедеятельности конкретных промысловых видов.

Для примера в табл. 1 приведены примеры классификации биоэлементов, с учетом среднего содержание их в гидросфере. На основе классификации с учётом значений латинских приставок для большинства видов, разводимых в естественных или искусственных водоёмах, безопасное и достаточное для жизнеобеспечения содержание биоэлемента находится в пределах одного, редко двух порядков; для токсичных элементов (в зависимости от класса токсичности) устанавливаются коэффициенты безопасных границ содержания по известным формулам, приведённым в СанПиН, с учетом синергетичного эффекта опасного действия.

Таблица 1. Биоэлементы воды с учетом значений латинских приставок Символ элемента Элемент Среднее содержание в гидросфере г/л Классификация

Символ элемента	Элемент	Среднее содержание в гидросфере, 17л	классификация
В	Бор	4,4 ·10-3	Миллиэлемент первого порядка
Mo	Молибден	1,2 ·10-3	Миллиэлемент первого порядка
Pr	Празеодим	9,2 ·10-3	Миллиэлемент первого порядка
Si	Кремний	2,2 ·10 ⁻³	Миллиэлемент первого порядка
Sr	Стронций	7,9 ·10 ⁻³	Миллиэлемент первого порядка
Ar	Аргон	4,5 ·10 ⁻⁴	Миллиэлемент второго порядка
Li	Литий	1,8 ·10 ⁻⁴	Миллиэлемент второго порядка
N	Азот	5,0 ·10-4	Миллиэлемент второго порядка
Rb	Рубидий	1,2 ·10-4	Миллиэлемент второго порядка
Ba	Барий	1,3 ·10 ⁻⁵	Миллиэлемент третьего порядка
I	Йод	6,0 ·10 ⁻⁵	Миллиэлемент третьего порядка
In	Индий	2,0 ·10-5	Миллиэлемент третьего порядка
Mo	Молибден	1,0 ·10-5	Миллиэлемент третьего порядка
P	Фосфор	6,0 ·10 ⁻⁵	Миллиэлемент третьего порядка
Sb	Сурьма	7,9 ·10 ⁻⁵	Миллиэлемент третьего порядка
Al	Алюминий	2,0 ·10-6	Микроэлемент первого порядка
As	Мышьяк	3,7 ·10 ⁻⁶	Микроэлемент первого порядка
Fe	Железо	2,0 ·10-6	Микроэлемент первого порядка
Ti	Титан	1,0 ·10 ⁻⁶	Микроэлемент первого порядка
U	Уран	3,2 ·10 ⁻⁶	Микроэлемент первого порядка

Актуальная биотехнология

№1 (35), 2021

Символ элемента	Элемент	Среднее содержание в гидросфере, г/л	Классификация
V	Ванадий	2,2 ·10 ⁻⁶	Микроэлемент первого порядка
Zn	Цинк	7,0 ·10 ⁻⁶	Микроэлемент первого порядка
Cs	Цезий	3,0 ·10 ⁻⁷	Микроэлемент второго порядка
Cu	Медь	2,5 ·10-7	Микроэлемент второго порядка
Kr	Криптон	3,0 ·10-7	Микроэлемент второго порядка
Mn	Марганец	2,5 ·10-7	Микроэлемент второго порядка
Ne	Неон	1,2 ·10 ⁻⁷	Микроэлемент второго порядка
Ni	Никель	8,4 ·10 ⁻⁷	Микроэлемент второго порядка
Se	Селен	2,0 ·10-7	Микроэлемент второго порядка
W	Вольфрам	1,0 ·10 ⁻⁷	Микроэлемент второго порядка
Ag	Серебро	4,0 ·10-8	Микроэлемент третьего порядка
Bi	Висмут	2,0 ·10-8	Микроэлемент третьего порядка
Co	Кобальт	2,0 ·10-8	Микроэлемент третьего порядка
Ga	Галий	3,0 ·10-8	Микроэлемент третьего порядка
Ge	Германий	5,0 ·10-8	Микроэлемент третьего порядка
Hg	Ртуть	3,0 ·10-8	Микроэлемент третьего порядка
Nb	Ниобий	1,0 ·10-8	Микроэлемент третьего порядка
Pb	Свинец	3,0 ·10-8	Микроэлемент третьего порядка
Tl	Тантал	1,9 ·10-8	Микроэлемент третьего порядка
Y	Иттрий	1,3 ·10-8	Микроэлемент третьего порядка
Zr	Цирконий	3,0 ·10-8	Микроэлемент третьего порядка
Au	Золото	4,0 ·10 ⁻⁹	Наноэлемент первого порядка
Hf	Гафний	7,0 ·10 ⁻⁹	Наноэлемент первого порядка
Ta	Тантал	2,0 ·10-9	Наноэлемент первого порядка
Ru	Рубидий	7,0 ·10 ⁻¹⁰	Наноэлемент второго порядка
Sc	Скандий	6,0 ·10 ⁻¹⁰	Наноэлемент второго порядка
Tb	Тербий	1,4 ·10 ⁻¹⁰	Наноэлемент второго порядка

Таким образом, предложенная в нутрициологии новая классификация биоэлементов [3] может иметь долгосрочные перспективы применения в целях развития экологической гидрохимии при разведении аквакультур.

Литература

- 1. Bio-elements in functional foods / I.S. Polyanskaya, V.L Popova, L.G. Stoyanova, A.S. Teraevich // Journal of Hygienic Engineering and Design. 2017. T. 21. C. 70–76.
- 2. Polyanskaya I.S. Quasicapsulation of probiotics / I.S. Polyanskaya, V.L Popova, L.G., Stoyanova, V.F. Semenikhina // Journal of Hygienic Engineering and Design. 2018. T. 24. C. 31–38.
- 3. Полянская И.С. Нутрициологическая химия s-элементов / И.С. Полянская; М-во сельского хоз-ва РФ, ФГБОУ ВПО "Вологодская гос. молочнохозяйственная акад. им. Н.В. Верещагина". Вологда, 2011. 139 с.